Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec 7;12(54):34831-34836.
doi: 10.1039/d2ra05078a. eCollection 2022 Dec 6.

Copper-promoted direct sulfenylation of C1-H bonds in 4-aryl pyrrolo[1,2- a]quinoxalines

Affiliations

Copper-promoted direct sulfenylation of C1-H bonds in 4-aryl pyrrolo[1,2- a]quinoxalines

Thuy T Ca et al. RSC Adv. .

Abstract

Methods for direct functionalization of C(sp2)-H bonds in pyrrolo[1,2-a]quinoxalines have witnessed emerging development over the last decade. Herein we report a new tactic to afford a selective sulfenylation of 4-aryl pyrrolo[1,2-a]quinoxalines with diaryl disulfides. The reactions proceeded in the presence of a copper catalyst and potassium iodide promoter. Functionalities including nitro, ester, amide, methylthio, and halogen groups were all tolerated. Our method offers a convenient route to obtain highly substituted pyrrolo[1,2-a]quinoxalines-based thioethers in moderate to good yields.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Scope of pyrrolo[1,2-a]quinoxalines. Reagents and conditions: 1b–1o (0.1 mmol), diphenyl disulfide 2a (0.05 mmol), CuCl2 (0.03 mmol), KI (0.05 mmol), DMSO (1 mL), 120 °C, 24 h, under air. Yields are isolated yields. aDiphenyl disulfide 2a (0.075 mmol) was used.
Scheme 2
Scheme 2. Sulfenylation of pyrrolo[1,2-a]quinoxaline C1–H bond in the presence of C4–H bond.
Scheme 3
Scheme 3. Sulfenylation of pyrrolo[1,2-a]quinoxaline C–H bonds with di(hetero)aryl disulfides. Reagents and conditions: pyrrolo[1,2-a]quinoxalines 1q/1a (0.1 mmol), disulfides (0.075 mmol for 2b–2c, 0.05 mmol for 2d–2f), CuCl2 (0.03 mmol), KI (0.05 mmol), DMSO (1 mL), 120 °C, 24 h, under air. Yields are isolated yields.
Scheme 4
Scheme 4. Mechanistic consideration. Reagents and conditions: (eqn (1)) 1a (0.1 mmol), CuCl2 (0.03 mmol), KI (0.05 mmol), DMSO (1 mL), 120 °C, 24 h, under air; (eqn (2)) 1a (0.1 mmol), 2a (0.05 mmol), CuCl2 (0.03 mmol), KI (0.05 mmol), 1,1′-diphenylethylene (0.2 mmol), DMSO (1 mL), 120 °C, 24 h, under air.

References

    1. Selected examples:

    2. Guillon J. Forfar I. Mamani-Matsuda M. Desplat V. Saliège M. Thiolat D. Massip S. Tabourier A. Léger J.-M. Dufaure B. Haumont G. Jarry C. Mossalayi D. Bio. Med. Chem. 2007;15:194. doi: 10.1016/j.bmc.2006.09.068. - DOI - PubMed
    3. de Lucio H. García-Marín J. Sánchez-Alonso P. García-Soriano J. C. Toro M. Á. Vaquero J. J. Gago F. Alajarín R. Jiménez-Ruiz A. Eur. J. Med. Chem. 2022;227:113915. doi: 10.1016/j.ejmech.2021.113915. - DOI - PubMed
    4. Biswas C. Krishnakanth K. N. Lade J. J. Chaskar A. C. Tripathi A. Chetti P. Soma V. R. Raavi S. S. K. Chem. Phys. Lett. 2019;730:638. doi: 10.1016/j.cplett.2019.06.062. - DOI
    1. Selected reviews:

    2. Kalinin A. A. Islamova L. N. Fazleeva G. M. Chem. Heterocycl. Compd. 2019;55:584. doi: 10.1007/s10593-019-02501-w. - DOI
    3. Le H. X. Nguyen T. T. ChemistrySelect. 2022;7:e202200166.
    1. Yang Z. He J. Wei Y. Li W. Liu P. Zhao J. Wei Y. Org. Biomol. Chem. 2020;18:9088. doi: 10.1039/D0OB01818J. - DOI - PubMed
    2. Li Y. Yang Z. Liu Y. Liu Y. Gu Y. Liu P. Mol. Catal. 2021;511:111747. doi: 10.1016/j.mcat.2021.111747. - DOI
    3. Liu Y. Wei Y. Yang Z. Li Y. Liu Y. Liu P. Org. Biomol. Chem. 2021;19:5191. doi: 10.1039/D1OB00759A. - DOI - PubMed
    4. Le H. X. Hoang T. N. B. Tran T. H. Nguyen C. T. D. Chiem L. N. T. Phan N. T. S. Nguyen T. T. Tetrahedron Lett. 2021;67:152879. doi: 10.1016/j.tetlet.2021.152879. - DOI
    5. Yang Z. He J. Wei Y. Li W. Liu P. Org. Biomol. Chem. 2020;18:3360. doi: 10.1039/D0OB00494D. - DOI - PubMed
    6. Li Y. Liu Y. Hao D. Li C. Liu Y. Gu Y. Vaccaro L. Liu P. Tetrahedron. 2022;105:132610. doi: 10.1016/j.tet.2021.132610. - DOI
    7. Hao D. Yang Z. Liu Y. Li Y. Liu Y. Liu P. J. Mol. Struct. 2022;1267:133636. doi: 10.1016/j.molstruc.2022.133636. - DOI - PubMed
    8. Hao D. Yang Z. Liu Y. Li Y. Li C. Gu Y. Vaccaro L. Liu J. Liu P. Org. Biomol. Chem. 2022;20:847. doi: 10.1039/D1OB02248B. - DOI - PubMed
    1. Selected recent reviews:

    2. Kaiser D. Klose I. Oost R. Neuhaus J. Maulide N. Chem. Rev. 2020;119:8701. doi: 10.1021/acs.chemrev.9b00111. - DOI - PMC - PubMed
    3. Annamalai P. Liu K.-C. Badsara S. S. Lee C.-F. Chem. Rec. 2021;21:3674. doi: 10.1002/tcr.202100133. - DOI - PubMed
    4. Azzi E. Lanfranco A. Moro R. Deagostino A. Renzi P. Synthesis. 2021;53:3440. doi: 10.1055/a-1509-5541. - DOI - PubMed
    1. Selected recent examples:

    2. Gandeepan P. Koeller J. Ackermann L. ACS Catal. 2017;7:1030. doi: 10.1021/acscatal.6b03236. - DOI
    3. Kajiwara R. Takamatsu K. Hirano K. Miura M. Org. Lett. 2020;22:5915. doi: 10.1021/acs.orglett.0c02012. - DOI - PubMed
    4. Kathiravan S. Anaspure P. Zhang T. Nicholls I. A. Org. Lett. 2021;23:3331. doi: 10.1021/acs.orglett.1c00829. - DOI - PMC - PubMed
    5. Vásquez-Céspedes S. Ferry A. Candish L. Glorius F. Angew. Chem., Int. Ed. 2015;54:5772. doi: 10.1002/anie.201411997. - DOI - PubMed
    6. Song Z. Ding C. Wang S. Dai Q. Sheng Y. Zheng Z. Liang G. Chem. Commun. 2020;56:1847. doi: 10.1039/C9CC09001K. - DOI - PubMed