Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb:165:103395.
doi: 10.1016/j.micron.2022.103395. Epub 2022 Dec 7.

Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope

Affiliations

Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope

Kayleigh L Y Fung et al. Micron. 2023 Feb.

Abstract

Reactivity of a series of related molecules under the 80 keV electron beam have been investigated and correlated with their structures and chemical composition. Hydrogenated and halogenated derivatives of hexaazatrinaphthylene, coronene, and phthalocyanine were prepared by sublimation in vacuum to form solventless crystals then deposited onto transmission electron microscopy (TEM) grids. The transformation of the molecules in the microcrystals were triggered by an 80 keV electron beam in the TEM and studied using correlated selected area electron diffraction, conventional bright field imaging, and energy dispersive X-ray spectroscopy. The critical fluence (ē nm-2) required to cause a disappearance of the diffraction pattern was recorded and used as a measure of the reactivity of the molecules. The same electron flux (102 ē nm-2 s-1) was used throughout. Fully halogenated molecules were found to be the most stable and did not change significantly under our experimental conditions, followed by fully hydrogenated molecules with critical fluences of 104 ē nm-2. Surprisingly, semi-halogenated molecules that contained an equal number of hydrogen and halogen atoms were found to be the least stable, with critical fluences an order of magnitude lower at 103 ē nm-2. This is attributed to elimination of H-X (where X = F or Cl), followed by polymerisation of aryne / aryl radicals within the crystal. The critical fluence for the semi-fluorinated hexaazatrinaphthylene is the lowest as the presence of water molecules in its crystal lattice significantly decreased the stability of the organic molecules under the electron beam. Semi-halogenation reduces the beam stability of organic molecules compared to the parent hydrogenated molecule, thus providing the chemical guidance for design of electron beam stable materials. Understanding of molecular reactivity in the electron beam is necessary for advancement of molecular imaging and analysis methods by the TEM, molecular materials processing, and electron beam-driven synthesis of novel materials.

Keywords: Beam damage; Electron beam; Electron beam diffraction; Molecular crystals; Transmission electron microscopy.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.