Decarboxylative ring-opening of 2-oxazolidinones: a facile and modular synthesis of β-chalcogen amines
- PMID: 36545628
- PMCID: PMC9710311
- DOI: 10.1039/d2ra06070a
Decarboxylative ring-opening of 2-oxazolidinones: a facile and modular synthesis of β-chalcogen amines
Abstract
We report herein the synthesis of primary and secondary β-chalcogen amines through the regioselective ring-opening reaction of non-activated 2-oxazolidinones promoted by in situ generated chalcogenolate anions. The developed one-step protocol enabled the preparation of β-selenoamines, β-telluroamines and β-thioamines with appreciable structural diversity and in yields of up to 95%.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures


References
-
- Rappoport Z., Liebman J. F., Marek I. and Patai S., The Chemistry of Organic Selenium and Tellurium Compounds, 2014, https://www.wiley.com/en-us/The+Chemistry+of+Organic+Selenium+and+Tellur...
- Wirth T., Organoselenium Chemistry: Synthesis and Reactions, 2012, https://www.wiley.com/enus/Organoselenium+Chemistry%3A+Synthesis+and+Rea...
- Wirth T. Angew. Chem., Int. Ed. 2000;39:3740–3749. doi: 10.1002/1521-3773(20001103)39:21<3740::AID-ANIE3740>3.0.CO;2-N. - DOI - PubMed
-
- Freudendahl D. M. Santoro S. Shahzad S. A. Santi C. Wirth T. Angew. Chem., Int. Ed. 2009;48:8409–8411. doi: 10.1002/anie.200903893. - DOI - PubMed
- Godoi M. Paixão M. W. Braga A. L. Dalton Trans. 2011;40:11347–11355. doi: 10.1039/C1DT11022E. - DOI - PubMed
- Trenner J. Depken C. Weber T. Breder A. Angew. Chem., Int. Ed. 2013;52:8952–8956. doi: 10.1002/anie.201303662. - DOI - PubMed
-
- Hoover G. C. Seferos D. S. Chem. Sci. 2019;10:9182–9188. doi: 10.1039/C9SC04279B. - DOI - PMC - PubMed
- Jeffries-El M. Kobilka B. M. Hale B. J. Macromolecules. 2014;47:7253–7271. doi: 10.1021/ma501236v. - DOI
- Lou Z. Li P. Han K. Acc. Chem. Res. 2015;48:1358–1368. doi: 10.1021/acs.accounts.5b00009. - DOI - PubMed
- Gregory S. A. Menon A. K. Ye S. Seferos D. S. Reynolds J. R. Yee S. K. Adv. Energy Mater. 2018;8:1802419. doi: 10.1002/aenm.201802419. - DOI
-
- Santi C. Tidei C. Scalera C. Piroddi M. Galli F. Curr. Chem. Biol. 2013;7:25–36. doi: 10.2174/2212796811307010003. - DOI
- Manna D. Roy G. Mugesh G. Acc. Chem. Res. 2013;46:2706–2715. doi: 10.1021/ar4001229. - DOI - PubMed
- Kumar S. Yan J. Poon J. Singh V. P. Lu X. Ott M. K. Engman L. Kumar S. Angew. Chem., Int. Ed. 2016;55:3729–3733. doi: 10.1002/anie.201510947. - DOI - PubMed
- Reich H. J. Hondal R. J. ACS Chem. Biol. 2016;11:821–841. doi: 10.1021/acschembio.6b00031. - DOI - PubMed
- Jin Z. Du X. Xu Y. Deng Y. Liu M. Zhao Y. Zhang B. Li X. Zhang L. Peng C. Duan Y. Yu J. Wang L. Yang K. Liu F. Jiang R. Yang X. You T. Liu X. Yang X. Bai F. Liu H. Liu X. Guddat L. W. Xu W. Xiao G. Qin C. Shi Z. Jiang H. Rao Z. Yang H. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. - DOI - PubMed