Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application
- PMID: 36551109
- PMCID: PMC9776347
- DOI: 10.3390/bios12121142
Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application
Abstract
Small-molecule contaminants, such as antibiotics, pesticides, and plasticizers, have emerged as one of the substances most detrimental to human health and the environment. Therefore, it is crucial to develop low-cost, user-friendly, and portable biosensors capable of rapidly detecting these contaminants. Antibodies have traditionally been used as biorecognition elements. However, aptamers have recently been applied as biorecognition elements in aptamer-based biosensors, also known as aptasensors. The systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro technique used to generate aptamers that bind their targets with high affinity and specificity. Over the past decade, a modified SELEX method known as Capture-SELEX has been widely used to generate DNA or RNA aptamers that bind small molecules. In this review, we summarize the recent strategies used for Capture-SELEX, describe the methods commonly used for detecting and characterizing small-molecule-aptamer interactions, and discuss the development of aptamer-based biosensors for various applications. We also discuss the challenges of the Capture-SELEX platform and biosensor development and the possibilities for their future application.
Keywords: DNA and RNA Capture-SELEX; aptamer; biosensing applications; characterization; nucleic acid aptamer; small molecule contaminant.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules.Methods Mol Biol. 2018;1671:291-306. doi: 10.1007/978-1-4939-7295-1_18. Methods Mol Biol. 2018. PMID: 29170966
-
Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application.Biosensors (Basel). 2022 Oct 25;12(11):922. doi: 10.3390/bios12110922. Biosensors (Basel). 2022. PMID: 36354431 Free PMC article. Review.
-
Viral aptamer screening and aptamer-based biosensors for virus detection: A review.Int J Biol Macromol. 2024 Sep;276(Pt 2):133935. doi: 10.1016/j.ijbiomac.2024.133935. Epub 2024 Jul 17. Int J Biol Macromol. 2024. PMID: 39029851 Review.
-
Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development.Angew Chem Int Ed Engl. 2021 Jul 26;60(31):16800-16823. doi: 10.1002/anie.202008663. Epub 2021 Feb 9. Angew Chem Int Ed Engl. 2021. PMID: 33559947 Free PMC article. Review.
-
Improving aptamer performance: key factors and strategies.Mikrochim Acta. 2023 Jun 10;190(7):255. doi: 10.1007/s00604-023-05836-6. Mikrochim Acta. 2023. PMID: 37300603 Review.
Cited by
-
Current developments of SELEX technologies and prospects in the aptamer selection with clinical applications.J Genet Eng Biotechnol. 2024 Sep;22(3):100400. doi: 10.1016/j.jgeb.2024.100400. Epub 2024 Jul 25. J Genet Eng Biotechnol. 2024. PMID: 39179327 Free PMC article. Review.
-
Rational Approach to Optimizing Conformation-Switching Aptamers for Biosensing Applications.ACS Sens. 2024 Feb 23;9(2):717-725. doi: 10.1021/acssensors.3c02004. Epub 2024 Jan 25. ACS Sens. 2024. PMID: 38270529 Free PMC article.
-
Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives.Biosensors (Basel). 2024 Aug 1;14(8):376. doi: 10.3390/bios14080376. Biosensors (Basel). 2024. PMID: 39194605 Free PMC article. Review.
-
Structural Optimization and Interaction Study of a DNA Aptamer to L1 Cell Adhesion Molecule.Int J Mol Sci. 2023 May 11;24(10):8612. doi: 10.3390/ijms24108612. Int J Mol Sci. 2023. PMID: 37239955 Free PMC article.
-
Research Progress in Small-Molecule Detection Using Aptamer-Based SERS Techniques.Biosensors (Basel). 2025 Jan 8;15(1):29. doi: 10.3390/bios15010029. Biosensors (Basel). 2025. PMID: 39852080 Free PMC article. Review.
References
-
- Minh T.B., Leung H.W., Loi I.H., Chan W.H., So M.K., Mao J.Q., Choi D., Lam J.C., Martin M., Lee J.H.W., et al. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour. Mar. Pollut. Bull. 2009;58:1052–1062. doi: 10.1016/j.marpolbul.2009.02.004. - DOI - PubMed
-
- Gothwal R., Shashidhar T. Antibiotic Pollution in the Environment: A Review. CLEAN–Soil. Air Water. 2015;43:479–489. doi: 10.1002/clen.201300989. - DOI
-
- Parra-Arroyo L., Gonzalez-Gonzalez R.B., Castillo-Zacarias C., Melchor Martinez E.M., Sosa-Hernandez J.E., Bilal M., Iqbal H.M.N., Barcelo D., Parra-Saldivar R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. Sci. Total Environ. 2022;807:151879. doi: 10.1016/j.scitotenv.2021.151879. - DOI - PubMed
-
- Pan W., Zeng D., Ding N., Luo K., Man Y.B., Zeng L., Zhang Q., Luo J., Kang Y. Percutaneous Penetration and Metabolism of Plasticizers by Skin Cells and Its Implication in Dermal Exposure to Plasticizers by Skin Wipes. Environ. Sci. Technol. 2020;54:10181–10190. doi: 10.1021/acs.est.0c02455. - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- JCYJ20180507181642811/Shenzhen Basic Research Project
- CityU 11100222, CityU 11100421, CityU 11101519, CityU 11100218, N_CityU110/17/Research Grants Council of the Hong Kong SAR, China Projects
- 9509003/Croucher Foundation Project
- 7005503, 9667222, 9680261/State Key Laboratory of Marine Pollution Director Discretionary Fund; City University of Hong Kong projects
LinkOut - more resources
Full Text Sources
Miscellaneous