Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov 22;12(12):2896.
doi: 10.3390/diagnostics12122896.

Label-Free Optical Spectroscopy for Early Detection of Oral Cancer

Affiliations
Review

Label-Free Optical Spectroscopy for Early Detection of Oral Cancer

Siddra Maryam et al. Diagnostics (Basel). .

Abstract

Oral cancer is the 16th most common cancer worldwide. It commonly arises from painless white or red plaques within the oral cavity. Clinical outcome is highly related to the stage when diagnosed. However, early diagnosis is complex owing to the impracticality of biopsying every potentially premalignant intraoral lesion. Therefore, there is a need to develop a non-invasive cost-effective diagnostic technique to differentiate non-malignant and early-stage malignant lesions. Optical spectroscopy may provide an appropriate solution to facilitate early detection of these lesions. It has many advantages over traditional approaches including cost, speed, objectivity, sensitivity, painlessness, and ease-of use in clinical setting for real-time diagnosis. This review consists of a comprehensive overview of optical spectroscopy for oral cancer diagnosis, epidemiology, and recent improvements in this field for diagnostic purposes. It summarizes major developments in label-free optical spectroscopy, including Raman, fluorescence, and diffuse reflectance spectroscopy during recent years. Among the wide range of optical techniques available, we chose these three for this review because they have the ability to provide biochemical information and show great potential for real-time deep-tissue point-based in vivo analysis. This review also highlights the importance of saliva-based potential biomarkers for non-invasive early-stage diagnosis. It concludes with the discussion on the scope of development and future demands from a clinical point of view.

Keywords: Raman spectroscopy; biomarkers; diffuse reflectance spectroscopy; fluorescence spectroscopy; oral cancer; saliva analysis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interest.

Figures

Figure 1
Figure 1
(A) Electromagnetic spectrum and light tissue interaction. (B) Key features of Raman spectroscopy (RS), diffuse reflectance spectroscopy (DRS), and fluorescence spectroscopy (FS). (C) Light tissue interaction and comparative depth of RS, DRS, and FS in oral mucosa.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. - DOI - PubMed
    1. Miranda-Filho A., Bray F. Global patterns and trends in cancers of the lip, tongue and mouth. Oral Oncol. 2020;102:104551. doi: 10.1016/j.oraloncology.2019.104551. - DOI - PubMed
    1. Markopoulos A.K. Current aspects on oral squamous cell carcinoma. Open Dent. J. 2012;6:126. doi: 10.2174/1874210601206010126. - DOI - PMC - PubMed
    1. Chen X.-J., Zhang X.-Q., Liu Q., Zhang J., Zhou G. Nanotechnology: A promising method for oral cancer detection and diagnosis. J. Nanobiotechnol. 2018;16:52. doi: 10.1186/s12951-018-0378-6. - DOI - PMC - PubMed

LinkOut - more resources