Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;28(9):1098-109.

Turnover and tissue sites of degradation of glucosylated low density lipoprotein in normal and immunized rabbits

Affiliations
  • PMID: 3655562
Free article

Turnover and tissue sites of degradation of glucosylated low density lipoprotein in normal and immunized rabbits

O Wiklund et al. J Lipid Res. 1987 Sep.
Free article

Abstract

Immunological mechanisms have been implicated in the atherogenic process since immunoglobulins are frequently found in the atherosclerotic aorta. We have previously shown that modifications of homologous low density lipoproteins (LDL) make it immunogenic. In particular we have demonstrated that immunization with homologous nonenzymatically glucosylated LDL (glcLDL) results in the generation of antibodies specific to the derivatized lysine residue, and that such antibodies do not react with native LDL epitopes. In the present study we immunized rabbits with reductively glucosylated rabbit LDL and then determined the effects of the circulating antibodies on the rates of plasma clearance and on the sites of degradation of LDL in which varying degrees of glucosylation had been achieved. In normal chow-fed animals, the plasma clearance of glcLDL was retarded in proportion to the extent of lysine derivatization. In contrast, in immunized animals the clearance of glcLDL was greatly accelerated. When 10% or more of lysine residues were derivatized, clearance of glcLDL was accelerated 50- to 100-fold. Even when only 5% of lysines were derivatized, plasma clearance was accelerated 2- to 3-fold. Cholesterol feeding inhibited LDL clearance from plasma and decreased LDL uptake of LDL receptor-rich tissues. In a similar manner, glucosylation of LDL inhibited its ability to bind to the LDL receptor and redirected sites of LDL degradation away from LDL receptor-rich tissues. Thus degradation of glcLDL by liver and adrenal was markedly diminished. The presence of antibodies to glcLDL also redirected sites of degradation of the modified LDL, primarily to the reticuloendothelial cells of the liver. There was no evidence for specific targeting of glcLDL-immunoglobulin complexes to the aorta; instead they were targeted to the liver. These data suggest that the presence of humoral antibodies to modified LDL acts to rapidly remove such LDL from plasma and specifically targets such complexes to reticuloendothelial cells, primarily in the liver. In this manner such antibodies may serve a useful purpose.

PubMed Disclaimer

Publication types

LinkOut - more resources