Terahertz Combined with Metamaterial Microfluidic Chip for Troponin Antigen Detection
- PMID: 36557556
- PMCID: PMC9783854
- DOI: 10.3390/mi13122257
Terahertz Combined with Metamaterial Microfluidic Chip for Troponin Antigen Detection
Abstract
In this paper, we use terahertz combined with metamaterial technology as a powerful tool to identify analytes at different concentrations. Combined with the microfluidic chip, the experimental measurement can be performed with a small amount of analyte. In detecting the troponin antigen, surface modification is carried out by biochemical binding. Through the observation of fluorescent antibodies, the average number of fluorescent dots per unit of cruciform metamaterial is 25.60, and then, by adjusting the binding temperature and soaking time, the average number of fluorescent dots per unit of cruciform metamaterial can be increased to 181.02. Through the observation of fluorescent antibodies, it is confirmed that the antibodies can be successfully stabilized on the metamaterial and then bound to the target antigen. The minimum detectable concentration is between 0.05~0.1 μg/100 μL, and the concentration and ΔY show a positive correlation of R2 = 0.9909.
Keywords: antigen; metamaterials; microfluidics; terahertz; troponin.
Conflict of interest statement
The authors declare no conflict of interest.
Figures










Similar articles
-
Sensitivity Enhancement and Probiotic Detection of Microfluidic Chips Based on Terahertz Radiation Combined with Metamaterial Technology.Micromachines (Basel). 2022 Jun 7;13(6):904. doi: 10.3390/mi13060904. Micromachines (Basel). 2022. PMID: 35744518 Free PMC article.
-
Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials.Opt Express. 2021 Oct 25;29(22):36535-36545. doi: 10.1364/OE.437909. Opt Express. 2021. PMID: 34809062
-
Low concentration noroxin detection using terahertz spectroscopy combined with metamaterial.Spectrochim Acta A Mol Biomol Spectrosc. 2021 Feb 15;247:119101. doi: 10.1016/j.saa.2020.119101. Epub 2020 Nov 4. Spectrochim Acta A Mol Biomol Spectrosc. 2021. PMID: 33181430
-
[Research progress in the application of biosensors by using metamaterial in terahertz wave].Guang Pu Xue Yu Guang Pu Fen Xi. 2014 Sep;34(9):2365-71. Guang Pu Xue Yu Guang Pu Fen Xi. 2014. PMID: 25532327 Review. Chinese.
-
Mechanisms and applications of terahertz metamaterial sensing: a review.Nanoscale. 2017 Sep 28;9(37):13864-13878. doi: 10.1039/c7nr03824k. Nanoscale. 2017. PMID: 28895970 Review.
Cited by
-
Ultrasensitive Terahertz Label-Free Metasensors Enabled by Quasi-Bound States in the Continuum.Research (Wash D C). 2024 Sep 26;7:0483. doi: 10.34133/research.0483. eCollection 2024. Research (Wash D C). 2024. PMID: 39329158 Free PMC article.
-
Microfluidic Distillation System for Separation of Propionic Acid in Foods.Micromachines (Basel). 2023 May 28;14(6):1133. doi: 10.3390/mi14061133. Micromachines (Basel). 2023. PMID: 37374718 Free PMC article.
References
-
- Ren A., Zahid A., Fan D., Yang X., Imran M.A., Alomainy A., Abbasi Q.H. State-of-the-art in terahertz sensing for food and water security–A comprehensive review. Trends Food Sci. Technol. 2019;85:241–251. doi: 10.1016/j.tifs.2019.01.019. - DOI
-
- Zhang M., Yeow J.T.W. Nanotechnology-based terahertz biological sensing: A review of its current state and things to come. IEEE Nanotechnol. Mag. 2016;10:30–38. doi: 10.1109/MNANO.2016.2572244. - DOI
-
- Tonouchi M. Cutting-edge terahertz technology. Nat. Photonics. 2007;1:97–105. doi: 10.1038/nphoton.2007.3. - DOI
LinkOut - more resources
Full Text Sources