Mechanisms of Antifungal Properties of Metal Nanoparticles
- PMID: 36558323
- PMCID: PMC9781740
- DOI: 10.3390/nano12244470
Mechanisms of Antifungal Properties of Metal Nanoparticles
Abstract
The appearance of resistant species of fungi to the existent antimycotics is challenging for the scientific community. One emergent technology is the application of nanotechnology to develop novel antifungal agents. Metal nanoparticles (NPs) have shown promising results as an alternative to classical antimycotics. This review summarizes and discusses the antifungal mechanisms of metal NPs, including combinations with other antimycotics, covering the period from 2005 to 2022. These mechanisms include but are not limited to the generation of toxic oxygen species and their cellular target, the effect of the cell wall damage and the hyphae and spores, and the mechanisms of defense implied by the fungal cell. Lastly, a description of the impact of NPs on the transcriptomic and proteomic profiles is discussed.
Keywords: ROS; antifungal resistance; fungi; gene regulation; mechanism of defense; metals; nanoparticles; proteomics; transcriptomics.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Metal nanoparticles: understanding the mechanisms behind antibacterial activity.J Nanobiotechnology. 2017 Oct 3;15(1):65. doi: 10.1186/s12951-017-0308-z. J Nanobiotechnology. 2017. PMID: 28974225 Free PMC article. Review.
-
Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms.Future Med Chem. 2014 Jan;6(1):77-90. doi: 10.4155/fmc.13.189. Future Med Chem. 2014. PMID: 24358949 Review.
-
Review on Metal-Based Nanoparticles: Role of Reactive Oxygen Species in Renal Toxicity.Chem Res Toxicol. 2020 Oct 19;33(10):2503-2514. doi: 10.1021/acs.chemrestox.9b00438. Epub 2020 Sep 23. Chem Res Toxicol. 2020. PMID: 32909744 Review.
-
Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.Microbiol Res. 2011 Mar 20;166(3):207-15. doi: 10.1016/j.micres.2010.03.003. Epub 2010 Jul 13. Microbiol Res. 2011. PMID: 20630731
-
Metal oxide nanoparticles as antimicrobial agents: a promise for the future.Int J Antimicrob Agents. 2017 Feb;49(2):137-152. doi: 10.1016/j.ijantimicag.2016.11.011. Epub 2017 Jan 3. Int J Antimicrob Agents. 2017. PMID: 28089172 Review.
Cited by
-
Antimicrobial Activity of Filtered Far-UVC Light (222 nm) against Different Pathogens.Biomed Res Int. 2023 Oct 31;2023:2085140. doi: 10.1155/2023/2085140. eCollection 2023. Biomed Res Int. 2023. PMID: 37942030 Free PMC article.
-
Formation Kinetics and Antimicrobial Activity of Silver Nanoparticle Dispersions Based on N-Reacetylated Oligochitosan Solutions for Biomedical Applications.Pharmaceutics. 2023 Nov 28;15(12):2690. doi: 10.3390/pharmaceutics15122690. Pharmaceutics. 2023. PMID: 38140032 Free PMC article.
-
Identification of the Ilex macrocarpa anthracnose pathogen and the antifungal potential of the cell-free supernatant of Bacillus velezensis against Colletotrichum fioriniae.Front Microbiol. 2024 Jun 20;15:1419436. doi: 10.3389/fmicb.2024.1419436. eCollection 2024. Front Microbiol. 2024. PMID: 38966396 Free PMC article.
-
Metal Nanomaterials and Hydrolytic Enzyme-Based Formulations for Improved Antifungal Activity.Int J Mol Sci. 2023 Jul 12;24(14):11359. doi: 10.3390/ijms241411359. Int J Mol Sci. 2023. PMID: 37511117 Free PMC article. Review.
-
Unraveling the Nano World in Paracoccidioidomycosis: Promising Applications of Nanotechnology in Diagnosis, Treatment, and Vaccines: A Mini Review.Curr Microbiol. 2025 Apr 28;82(6):264. doi: 10.1007/s00284-025-04251-9. Curr Microbiol. 2025. PMID: 40295332 Review.
References
-
- Taylor D.L., Hollingsworth T.N., McFarland J.W., Lennon N.J., Nusbaum C., Ruess R.W. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 2014;84:3–20. doi: 10.1890/12-1693.1. - DOI
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Medical