Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jul:388:323-47.
doi: 10.1113/jphysiol.1987.sp016617.

A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier

Affiliations

A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier

J F Ashmore. J Physiol. 1987 Jul.

Abstract

1. Outer hair cells from the cochlea of the guinea-pig were isolated and their motile properties studied in short-term culture by the whole-cell variant of the patch recording technique. 2. Cells elongated and shortened when subjected to voltage steps. Cells from both high- and low-frequency regions of the cochlea responded with an elongation when hyperpolarized and a shortening when depolarized. The longitudinal motion of the cell was measured by a differential photosensor capable of responding to motion frequencies 0-40 kHz. 3. Under voltage clamp the length change of the cell was graded with command voltage over a range +/- 2 microns (approximately 4% of the length) for cells from the apical turns of the cochlea. The mean sensitivity of the movement was 2.11 nm/pA injected current, or 19.8 nm/mV membrane polarization. 4. The kinetics of the cell length change during a voltage step were measured. Stimulated at their basal end, cells from the apical (low-frequency) cochlear turns responded with a latency of between 120 and 255 microseconds. The cells thereafter elongated exponentially by a process which could be characterized by three time constants, one with value 240 microseconds, and a second in the range 1.3-2.8 ms. A third time constant with a value 20-40 ms characterized a slower component which may represent osmotic changes. 5. Consistent with the linearity shown to voltage steps, sinusoidal stimulation of the cell generated movements which could be measured at frequencies above 1 kHz. The phase of the movement relative to the stimulus continued to grow with frequency, suggesting the presence of an absolute delay in the response of about 200 microseconds. 6. The electrically stimulated movements were insensitive to the ionic composition of the cell, manipulated by dialysis from the patch pipette. The responses occurred when the major cation was K+ or Na+ in the pipette. Loading the cell with ATP-free solutions or calcium buffers did not inhibit the response. 7. It is concluded that interaction between actin and myosin, although present in the cell, is unlikely to account for the cell motility. Instead, it is proposed that outer hair cell motility is associated with structures in the cell cortex. The implications for cochlear mechanics of such force generation in outer hair cells are discussed.

PubMed Disclaimer

References

    1. Cold Spring Harb Symp Quant Biol. 1965;30:181-90 - PubMed
    1. Hear Res. 1986;24(2):125-31 - PubMed
    1. J Physiol. 1976 Mar;256(1):43P-44P - PubMed
    1. Proc R Soc Lond B Biol Sci. 1978 May 5;201(1143):107-30 - PubMed
    1. J Acoust Soc Am. 1980 May;67(5):1679-85 - PubMed

Publication types

LinkOut - more resources