ApoJ/Clusterin concentrations are determinants of cerebrospinal fluid cholesterol efflux capacity and reduced levels are associated with Alzheimer's disease
- PMID: 36572909
- PMCID: PMC9791777
- DOI: 10.1186/s13195-022-01119-z
ApoJ/Clusterin concentrations are determinants of cerebrospinal fluid cholesterol efflux capacity and reduced levels are associated with Alzheimer's disease
Abstract
Background: Alzheimer's disease (AD) shares risk factors with cardiovascular disease (CVD) and dysregulated cholesterol metabolism is a mechanism common to both diseases. Cholesterol efflux capacity (CEC) is an ex vivo metric of plasma high-density lipoprotein (HDL) function and inversely predicts incident CVD independently of other risk factors. Cholesterol pools in the central nervous system (CNS) are largely separate from those in blood, and CNS cholesterol excess may promote neurodegeneration. CEC of cerebrospinal fluid (CSF) may be a useful measure of CNS cholesterol trafficking. We hypothesized that subjects with AD and mild cognitive impairment (MCI) would have reduced CSF CEC compared with Cognitively Normal (CN) and that CSF apolipoproteins apoA-I, apoJ, and apoE might have associations with CSF CEC.
Methods: We retrieved CSF and same-day ethylenediaminetetraacetic acid (EDTA) plasma from 108 subjects (40 AD; 18 MCI; and 50 CN) from the Center for Neurodegenerative Disease Research biobank at the Perelman School of Medicine, University of Pennsylvania. For CSF CEC assays, we used N9 mouse microglial cells and SH-SY5Y human neuroblastoma cells, and the corresponding plasma assay used J774 cells. Cells were labeled with [3H]-cholesterol for 24 h, had ABCA1 expression upregulated for 6 h, were exposed to 33 μl of CSF, and then were incubated for 2.5 h. CEC was quantified as percent [3H]-cholesterol counts in medium of total counts medium+cells, normalized to a pool sample. ApoA-I, ApoJ, ApoE, and cholesterol were also measured in CSF.
Results: We found that CSF CEC was significantly lower in MCI compared with controls and was poorly correlated with plasma CEC. CSF levels of ApoJ/Clusterin were also significantly lower in MCI and were significantly associated with CSF CEC. While CSF ApoA-I was also associated with CSF CEC, CSF ApoE had no association with CSF CEC. CSF CEC is significantly and positively associated with CSF Aβ. Taken together, ApoJ/Clusterin may be an important determinant of CSF CEC, which in turn could mitigate risk of MCI and AD risk by promoting cellular efflux of cholesterol or other lipids. In contrast, CSF ApoE does not appear to play a role in determining CSF CEC.
© 2022. The Author(s).
Conflict of interest statement
R.F.K.-D. is inventor on key patents in the field of metabolomics including applications for Alzheimer’s disease. She holds equity in Metabolon Inc. R.F.K-D. formed Chymia LLC and PsyProtix, a Duke University biotechnology spinout aiming to transform the treatment of mental health disorders.
L.M.S. received research support from NIH/NIA, Alzheimer’s Disease Neuroimaging Initiative (ADNI) (AG024904), and University of Pennsylvania ADCC Biomarker Core (AG010124), Michael J. Fox Foundation for Parkinson’s Research, Roche, and Lilly; provides QC oversight for Roche Elecsys CSF AD biomarker immunoassays for ADNI; and is a consultant for Roche, Lilly, and Novartis.
D.A.W. reports grants from Merck, Biogen, and Eli Lilly/Avid and additional fees from GE Healthcare, Functional Neuromodulation, Eli Lilly, Qynapse, and Neuronix, all outside of this work.
S.E.A. has received fees for serving on advisory boards for Allyx Therapeutics, Inc., Bob’s Last Marathon, Cassava, Cortexyme, Inc., Sage Therapeutics, Inc., vTv Therapeutics, Inc., and for consulting to AbbVie, Inc., Boyle Shaughnessy Law, Cognito Therapeutics, Inc., EIP Pharma, Inc., M3 Biotech, Inc., Orthogonal Neuroscience, Inc., and Risen Pharmaceutical Technology Co, Ltd. He has received sponsored research grant support from the following commercial entities: AbbVie, Inc., Amylyx, Inc., Athira Pharma, Inc., Chromadex, Inc., EIP Pharma, Inc., Janssen Pharmaceuticals, Inc., Novartis AG, Seer Biosciences, Inc., and vTv Therapeutics, Inc. He has received sponsored research grant support from the following non-commercial entities: Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation, Challenger Foundation, John Sperling Foundation, and the National Institutes of Health.
D.J.R. serves on the scientific advisory boards of Alnylam, Novartis, Pfizer, and Verve Therapeutics and is a Founder of Vascular Strategies and Staten Biotechnologies. He has received sponsored research support from Biogen Inc.
Figures
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
