[Biological reconstruction of large bone defects : Masquelet technique and new procedures]
- PMID: 36573997
- DOI: 10.1007/s00113-022-01267-9
[Biological reconstruction of large bone defects : Masquelet technique and new procedures]
Abstract
Extensive diaphyseal and metaphyseal bone defects continue to pose a major challenge for orthopedic trauma surgeons. Various treatment options have been described for the biological reconstruction of these defects. The most frequently used methods are bone segment transport, the Masquelet technique and 3D printed scaffolds. As far as the Masquelet technique is concerned, in the first stage spacers, such as polymethyl methacrylate (PMMA), calcium sulfate or polypropylene are inserted into the bone defects to induce a foreign body membrane. In the second stage the bone defect surrounded by the induced membrane is filled with autologous cancellous bone. The time interval between the first and second interventions is usually 4-8 weeks whereby the induced membranes do not lose their bioactivity even with a latency period longer than 8 weeks. Three-dimensional printed scaffolds are increasingly used but large clinical studies are lacking in order to show the exact role of this procedure in the reconstruction of bone defects.
Ausgedehnte dia- und metaphysäre Knochendefekte stellen nach wie vor eine große Herausforderung für Unfallchirurg*innen dar. Zur biologischen Rekonstruktion derartiger Defekte wurden verschiedene Behandlungsoptionen beschrieben. Die am häufigsten verwendeten Methoden sind der Segmenttransport, die Masquelet-Technik und 3D-gedruckte Scaffolds (Gerüste). Bei der Masquelet-Technik dienen im Ersteingriff in den Knochendefekt eingebrachte Spacer aus Polymethylmethacrylat (PMMA), Kalziumsulfat oder Polypropylen der Induktion einer Fremdkörpermembran; im Zweiteingriff erfolgt die Auffüllung des membranös umgebenen Knochendefekts mit autologer Spongiosa. Der zeitliche Abstand zwischen beiden operativen Eingriffen beträgt 4 bis 8 Wochen, wobei die induzierten Membranen auch bei einer zeitlichen Latenz länger als 8 Wochen nicht ihre Bioaktivität einbüßen. Dreidimensional gedruckte Scaffolds finden zunehmend Anwendung, wobei jedoch große klinische Studie fehlen, um die genaue Rolle dieses Verfahrens bei der Rekonstruktion von Knochendefekten zu zeigen.
Keywords: 3D printing; Induced membrane; Masquelet technique; Open fractures; Scaffolds.
© 2022. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
References
Literatur
-
- Liodakis E, Kenawey M, Krettek C, Wiebking U, Hankemeier S (2011) Comparison of 39 post-traumatic tibia bone transports performed with and without the use of an intramedullary rod: the long-term outcomes. Int Orthop 35(9):1397–1402. https://doi.org/10.1007/s00264-010-1094-5 - DOI - PubMed
-
- Ilizarov GA, Lediaev VI (1969) Replacement of defects of long tubular bones by means of one of their fragments. Vestn Khir Im I I Grek 102(6):77–84 - PubMed
-
- Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 45(3):346–353 - PubMed
-
- Papakostidis C, Bhandari M, Giannoudis PV (2013) Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J 95-B(12):1673–1680. https://doi.org/10.1302/0301-620X.95B12.32385 - DOI - PubMed
-
- Stafford PR, Norris BL (2010) Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 41(2):72–77. https://doi.org/10.1016/S0020-1383(10)70014-0 - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials