[Biological reconstruction of large bone defects : Masquelet technique and new procedures]
- PMID: 36573997
- DOI: 10.1007/s00113-022-01267-9
[Biological reconstruction of large bone defects : Masquelet technique and new procedures]
Abstract
Extensive diaphyseal and metaphyseal bone defects continue to pose a major challenge for orthopedic trauma surgeons. Various treatment options have been described for the biological reconstruction of these defects. The most frequently used methods are bone segment transport, the Masquelet technique and 3D printed scaffolds. As far as the Masquelet technique is concerned, in the first stage spacers, such as polymethyl methacrylate (PMMA), calcium sulfate or polypropylene are inserted into the bone defects to induce a foreign body membrane. In the second stage the bone defect surrounded by the induced membrane is filled with autologous cancellous bone. The time interval between the first and second interventions is usually 4-8 weeks whereby the induced membranes do not lose their bioactivity even with a latency period longer than 8 weeks. Three-dimensional printed scaffolds are increasingly used but large clinical studies are lacking in order to show the exact role of this procedure in the reconstruction of bone defects.
Ausgedehnte dia- und metaphysäre Knochendefekte stellen nach wie vor eine große Herausforderung für Unfallchirurg*innen dar. Zur biologischen Rekonstruktion derartiger Defekte wurden verschiedene Behandlungsoptionen beschrieben. Die am häufigsten verwendeten Methoden sind der Segmenttransport, die Masquelet-Technik und 3D-gedruckte Scaffolds (Gerüste). Bei der Masquelet-Technik dienen im Ersteingriff in den Knochendefekt eingebrachte Spacer aus Polymethylmethacrylat (PMMA), Kalziumsulfat oder Polypropylen der Induktion einer Fremdkörpermembran; im Zweiteingriff erfolgt die Auffüllung des membranös umgebenen Knochendefekts mit autologer Spongiosa. Der zeitliche Abstand zwischen beiden operativen Eingriffen beträgt 4 bis 8 Wochen, wobei die induzierten Membranen auch bei einer zeitlichen Latenz länger als 8 Wochen nicht ihre Bioaktivität einbüßen. Dreidimensional gedruckte Scaffolds finden zunehmend Anwendung, wobei jedoch große klinische Studie fehlen, um die genaue Rolle dieses Verfahrens bei der Rekonstruktion von Knochendefekten zu zeigen.
Keywords: 3D printing; Induced membrane; Masquelet technique; Open fractures; Scaffolds.
© 2022. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.
Similar articles
-
The Masquelet Technique: Can Disposable Polypropylene Syringes be an Alternative to Standard PMMA Spacers? A Rat Bone Defect Model.Clin Orthop Relat Res. 2021 Dec 1;479(12):2737-2751. doi: 10.1097/CORR.0000000000001939. Clin Orthop Relat Res. 2021. PMID: 34406150 Free PMC article.
-
Masquelet Reconstruction for Posttraumatic Segmental Bone Defects in the Forearm.J Hand Surg Am. 2019 Apr;44(4):342.e1-342.e8. doi: 10.1016/j.jhsa.2018.07.003. Epub 2018 Aug 23. J Hand Surg Am. 2019. PMID: 30146386
-
3D printed titanium cages combined with the Masquelet technique for the reconstruction of segmental femoral defects: Preliminary clinical results and molecular analysis of the biological activity of human-induced membranes.OTA Int. 2019 Mar 12;2(1):e016. doi: 10.1097/OI9.0000000000000016. eCollection 2019 Mar. OTA Int. 2019. PMID: 33937652 Free PMC article.
-
Engineering the bone reconstruction surgery: the case of the masquelet-induced membrane technique.Eur J Trauma Emerg Surg. 2025 Mar 18;51(1):138. doi: 10.1007/s00068-025-02815-9. Eur J Trauma Emerg Surg. 2025. PMID: 40102268 Free PMC article. Review.
-
[Reconstruction of osseous defects using the Masquelet technique].Orthopade. 2017 Aug;46(8):665-672. doi: 10.1007/s00132-017-3443-1. Orthopade. 2017. PMID: 28744608 Review. German.
Cited by
-
In vivo characterization of 3D-printed polycaprolactone-hydroxyapatite scaffolds with Voronoi design to advance the concept of scaffold-guided bone regeneration.Front Bioeng Biotechnol. 2023 Oct 4;11:1272348. doi: 10.3389/fbioe.2023.1272348. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 37860627 Free PMC article.
-
[Treatment of bony defects in femur and tibia : Established and new concepts].Unfallchirurgie (Heidelb). 2025 Aug 28. doi: 10.1007/s00113-025-01607-5. Online ahead of print. Unfallchirurgie (Heidelb). 2025. PMID: 40877708 Review. German.
-
The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective.J Funct Biomater. 2023 Jun 27;14(7):341. doi: 10.3390/jfb14070341. J Funct Biomater. 2023. PMID: 37504836 Free PMC article. Review.
References
Literatur
-
- Liodakis E, Kenawey M, Krettek C, Wiebking U, Hankemeier S (2011) Comparison of 39 post-traumatic tibia bone transports performed with and without the use of an intramedullary rod: the long-term outcomes. Int Orthop 35(9):1397–1402. https://doi.org/10.1007/s00264-010-1094-5 - DOI - PubMed
-
- Ilizarov GA, Lediaev VI (1969) Replacement of defects of long tubular bones by means of one of their fragments. Vestn Khir Im I I Grek 102(6):77–84 - PubMed
-
- Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 45(3):346–353 - PubMed
-
- Papakostidis C, Bhandari M, Giannoudis PV (2013) Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J 95-B(12):1673–1680. https://doi.org/10.1302/0301-620X.95B12.32385 - DOI - PubMed
-
- Stafford PR, Norris BL (2010) Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 41(2):72–77. https://doi.org/10.1016/S0020-1383(10)70014-0 - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials