Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Oct;43(10):1539-1543.
doi: 10.3174/ajnr.A7628. Epub 2022 Sep 8.

Utility of Dual-Energy CT to Improve Diagnosis of CSF Leaks on CT Myelography following Lateral Decubitus Digital Subtraction Myelography with Negative Findings

Affiliations

Utility of Dual-Energy CT to Improve Diagnosis of CSF Leaks on CT Myelography following Lateral Decubitus Digital Subtraction Myelography with Negative Findings

S J Huls et al. AJNR Am J Neuroradiol. 2022 Oct.

Abstract

CSF leaks, including CSF-venous fistulas, which cause spontaneous intracranial hypotension, remain difficult to diagnose, even on digital subtraction myelography and CT myelography. Dual-energy CT technology has been used to improve diagnostic utility within multiple organ systems. The capability of dual-energy CT to create virtual monoenergetic images can be leveraged to increase conspicuity of contrast in CSF-venous fistulas and direct epidural CSF leakage to improve the diagnostic utility of CT myelography. Six cases (in 5 patients) are shown in which virtual monoenergetic images demonstrate a leak location that was either occult or poorly visible on high- or low-kilovolt series. This clinical report describes the novel application of dual-energy CT for the detection of subtle CSF leaks including CSF-venous fistulas.

PubMed Disclaimer

Figures

FIG 1.
FIG 1.
A, 50-keV VMI. B, 100 kV. C, 140 kV. Case 1: Left-side-down CTM with linear contrast at the left T12–L1 neural foramen, thought to reflect a CVF (arrows). Contrast is also noted in the renal collecting system. ROI Hounsfield units: A, 50-keV VMI Hounsfield unit maximum (max): 283 HU; mean, 76 HU. B, 100 -kV Hounsfield unit max: 147 HU; mean, 68 HU. C, 140-kV Hounsfield unit max: 116 HU; mean, 46 HU. D, 50-keV VMI. E, 100 kV. F, 140 kV. Case 1: Right-side-down CTM with paraspinal contrast at the level of T11–12, representing a second CVF (arrows). ROI Hounsfield units: D, 50-keV VMI Hounsfield unit max: 981 HU; mean, 693 HU. E, 100-kV Hounsfield unit max: 542 HU; mean, 369 HU. F, 140-kV Hounsfield unit max: 233 HU; mean, 107 HU.
FIG 2.
FIG 2.
A, 50-keV VMI. B, 100 kV. C, 140 kV. Case 2: Left-side-down CTM with a suspected distal nerve root sleeve tear at the left L2–3 (arrows). The patient also had contrast in the renal collecting system (not shown). ROI Hounsfield units: A, 50-keV VMI Hounsfield unit maximum (max): 806 HU; mean, 271 HU. B, 100-kV Hounsfield unit max: 435 HU; mean, 133 HU. C, 140-kV Hounsfield unit max: 210 HU; mean, 68 HU.
FIG 3.
FIG 3.
A, 50 -keV VMI. B, 100 kV. C, 150 kV. Case 3: Right-side-down CTM with linear contrast at the right L2–3 neuroforamen (arrows), extending into the paraspinal soft tissues, thought to reflect a vessel associated with contrast leakage at a higher right-T10 distal nerve root sleeve tear (not shown). ROI Hounsfield units: A, 50-keV VMI Hounsfield unit maximum (max): 485 HU; mean, 118 HU. B, 100-kV Hounsfield unit max: 271 HU; mean, 51 HU. C, 150-kV Hounsfield unit max: 151 HU; mean, 16 HU.
FIG 4.
FIG 4.
A, 50-keV VMI. B, 100 kV. C, 140 kV. Case 4: Right-side-down CTM with a small focus of extradural contrast at the right aspect of the thecal sac at T7–8 (arrows). ROI Hounsfield units: A, 50-keV VMI Hounsfield unit maximum (max): 441 HU; mean, 275 HU). B, 100-kV Hounsfield unit max: 277 HU; mean, 165 HU. C, 140-kV Hounsfield unit max: 163 HU; mean, 102 HU.
FIG 5.
FIG 5.
A, 50-keV VMI. B, 100 kV. C, 140 kV. Case 5: CTM right-side-down at the level of T11–12 shows linear focus most consistent with a CSF venous fistula (arrows). ROI Hounsfield units: A, 50-keV Hounsfield unit maximum (max): 436 HU; mean, 154 HU. B, 100-kV Hounsfield unit max: 251 HU; mean, 88 HU. C, 140-kV Hounsfield unit max: 125 HU; mean, 33 HU.

Comment in

  • Myelographic Timing Matters.
    Mamlouk MD, Shen PY. Mamlouk MD, et al. AJNR Am J Neuroradiol. 2023 Mar;44(3):E16. doi: 10.3174/ajnr.A7726. Epub 2023 Feb 23. AJNR Am J Neuroradiol. 2023. PMID: 36822824 Free PMC article. No abstract available.

References

    1. Schievink WI, Meyer FB, Atkinson JL, et al. . Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. J Neurosurg 1996;84:598–605 10.3171/jns.1996.84.4.0598 - DOI - PubMed
    1. Farb RI, Nicholson PJ, Peng PW, et al. . Spontaneous intracranial hypotension: a systematic imaging approach for CSF leak localization and management based on MRI and digital subtraction myelography. AJNR Am J Neuroradiol 2019;40:745–53 10.3174/ajnr.A6016 - DOI - PMC - PubMed
    1. Mamlouk MD, Ochi RP, Jun P, et al. . Decubitus CT myelography for CSF-venous fistulas: a procedural approach. AJNR Am J Neuroradiol 2021;42:32–36 10.3174/ajnr.A6844 - DOI - PMC - PubMed
    1. Kim DK, Carr CM, Benson JC, et al. . Diagnostic yield of lateral decubitus digital subtraction myelogram stratified by brain MRI findings. Neurology 2021;96:e1312–18 10.1212/WNL.0000000000011522 - DOI - PubMed
    1. Kranz PG, Gray L, Malinzak MD, et al. . CSF-venous fistulas: anatomy and diagnostic imaging. AJR Am J Roentgenol 2021;217:1418–29 10.2214/AJR.21.26182 - DOI - PubMed

MeSH terms