The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer's disease: a literature review
- PMID: 36575454
- PMCID: PMC9793600
- DOI: 10.1186/s13195-022-01117-1
The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer's disease: a literature review
Abstract
The extracellular buildup of amyloid beta (Aβ) plaques in the brain is a hallmark of Alzheimer's disease (AD). Detection of Aβ pathology is essential for AD diagnosis and for identifying and recruiting research participants for clinical trials evaluating disease-modifying therapies. Currently, AD diagnoses are usually made by clinical assessments, although detection of AD pathology with positron emission tomography (PET) scans or cerebrospinal fluid (CSF) analysis can be used by specialty clinics. These measures of Aβ aggregation, e.g. plaques, protofibrils, and oligomers, are medically invasive and often only available at specialized medical centers or not covered by medical insurance, and PET scans are costly. Therefore, a major goal in recent years has been to identify blood-based biomarkers that can accurately detect AD pathology with cost-effective, minimally invasive procedures.To assess the performance of plasma Aβ assays in predicting amyloid burden in the central nervous system (CNS), this review compares twenty-one different manuscripts that used measurements of 42 and 40 amino acid-long Aβ (Aβ42 and Aβ40) in plasma to predict CNS amyloid status. Methodologies that quantitate Aβ42 and 40 peptides in blood via immunoassay or immunoprecipitation-mass spectrometry (IP-MS) were considered, and their ability to distinguish participants with amyloidosis compared to amyloid PET and CSF Aβ measures as reference standards was evaluated. Recent studies indicate that some IP-MS assays perform well in accurately and precisely measuring Aβ and detecting brain amyloid aggregates.
Keywords: Alzheimer’s disease; Amyloid beta; Amyloidosis; Biomarker; Blood; Plasma.
© 2022. The Author(s).
Conflict of interest statement
HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Alector, ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen, Novo Nordisk, Pinteon Therapeutics, Red Abbey Labs, reMYND, Passage Bio, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave, has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). OH has acquired research support (for the institution) from ADx, AVID Radiopharmaceuticals, Biogen, Eli Lilly, Eisai, Fujirebio, GE Healthcare, Pfizer, and Roche. In the past 2 years, he has received consultancy/speaker fees from AC Immune, Amylyx, Alzpath, BioArctic, Biogen, Cerveau, Fujirebio, Genentech, Novartis, Roche, and Siemens. LMS has served on scientific advisory boards and/or consultant for Biogen, Fujirebio, Roche, and Siemens Healthineers and lectured in conferences sponsored by Biogen, Fujirebio, and Roche. AN has nothing to declare about COI, but NCGG shares some patents with Shimadzu and receives royalty. SES has analyzed data provided by C2N Diagnostics to Washington University, but she has not received any research funding or personal compensation from C2N Diagnostics or any other for-profit organizations. RJB co-founded C2N Diagnostics. Washington University and RJB have equity ownership interest in C2N Diagnostics and receive royalty income based on technology (stable isotope labeling kinetics, blood plasma assay, and methods of diagnosing AD with phosphorylation changes) licensed by Washington University to C2N Diagnostics. RJB receives income from C2N Diagnostics for serving on the scientific advisory board. RJB has received research funding from Avid Radiopharmaceuticals, Janssen, Roche/Genentech, Eli Lilly, Eisai, Biogen, AbbVie, Bristol Myers Squibb, and Novartis.
Figures
References
-
- Ashford MT, Veitch DP, Neuhaus J, Nosheny RL, Tosun D, Weiner MW. The search for a convenient procedure to detect one of the earliest signs of Alzheimer’s disease: a systematic review of the prediction of brain amyloid status. Alzheimers Dement. 2021;17:866–887. doi: 10.1002/alz.12253. - DOI - PubMed
-
- Chong JR, Ashton NJ, Karikari TK, Tanaka T, Schöll M, Zetterberg H, et al. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer’s disease: a focused review on recent advances. J Neurol Neurosurg Psychiatry. 2021;92(11):1231–1241. doi: 10.1136/jnnp-2021-327370. - DOI - PubMed
-
- Bateman RJ, Blennow K, Doody R, Hendrix S, Lovestone S, Salloway S, et al. Plasma biomarkers of AD emerging as essential tools for drug development: an EU/US CTAD Task Force report. J Prev Alzheimers Dis. 2019;6(3):169–173. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
