Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec 27;14(1):195.
doi: 10.1186/s13195-022-01117-1.

The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer's disease: a literature review

Affiliations
Review

The performance of plasma amyloid beta measurements in identifying amyloid plaques in Alzheimer's disease: a literature review

Abby L Brand et al. Alzheimers Res Ther. .

Abstract

The extracellular buildup of amyloid beta (Aβ) plaques in the brain is a hallmark of Alzheimer's disease (AD). Detection of Aβ pathology is essential for AD diagnosis and for identifying and recruiting research participants for clinical trials evaluating disease-modifying therapies. Currently, AD diagnoses are usually made by clinical assessments, although detection of AD pathology with positron emission tomography (PET) scans or cerebrospinal fluid (CSF) analysis can be used by specialty clinics. These measures of Aβ aggregation, e.g. plaques, protofibrils, and oligomers, are medically invasive and often only available at specialized medical centers or not covered by medical insurance, and PET scans are costly. Therefore, a major goal in recent years has been to identify blood-based biomarkers that can accurately detect AD pathology with cost-effective, minimally invasive procedures.To assess the performance of plasma Aβ assays in predicting amyloid burden in the central nervous system (CNS), this review compares twenty-one different manuscripts that used measurements of 42 and 40 amino acid-long Aβ (Aβ42 and Aβ40) in plasma to predict CNS amyloid status. Methodologies that quantitate Aβ42 and 40 peptides in blood via immunoassay or immunoprecipitation-mass spectrometry (IP-MS) were considered, and their ability to distinguish participants with amyloidosis compared to amyloid PET and CSF Aβ measures as reference standards was evaluated. Recent studies indicate that some IP-MS assays perform well in accurately and precisely measuring Aβ and detecting brain amyloid aggregates.

Keywords: Alzheimer’s disease; Amyloid beta; Amyloidosis; Biomarker; Blood; Plasma.

PubMed Disclaimer

Conflict of interest statement

HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Alector, ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen, Novo Nordisk, Pinteon Therapeutics, Red Abbey Labs, reMYND, Passage Bio, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics, and Wave, has given lectures in symposia sponsored by Cellectricon, Fujirebio, Alzecure, Biogen, and Roche, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). OH has acquired research support (for the institution) from ADx, AVID Radiopharmaceuticals, Biogen, Eli Lilly, Eisai, Fujirebio, GE Healthcare, Pfizer, and Roche. In the past 2 years, he has received consultancy/speaker fees from AC Immune, Amylyx, Alzpath, BioArctic, Biogen, Cerveau, Fujirebio, Genentech, Novartis, Roche, and Siemens. LMS has served on scientific advisory boards and/or consultant for Biogen, Fujirebio, Roche, and Siemens Healthineers and lectured in conferences sponsored by Biogen, Fujirebio, and Roche. AN has nothing to declare about COI, but NCGG shares some patents with Shimadzu and receives royalty. SES has analyzed data provided by C2N Diagnostics to Washington University, but she has not received any research funding or personal compensation from C2N Diagnostics or any other for-profit organizations. RJB co-founded C2N Diagnostics. Washington University and RJB have equity ownership interest in C2N Diagnostics and receive royalty income based on technology (stable isotope labeling kinetics, blood plasma assay, and methods of diagnosing AD with phosphorylation changes) licensed by Washington University to C2N Diagnostics. RJB receives income from C2N Diagnostics for serving on the scientific advisory board. RJB has received research funding from Avid Radiopharmaceuticals, Janssen, Roche/Genentech, Eli Lilly, Eisai, Biogen, AbbVie, Bristol Myers Squibb, and Novartis.

Figures

Fig. 1
Fig. 1
Timeline of Aβ studies [, –25]. Timeline denoting significant events surrounding plasma Aβ use as a biomarker in AD diagnosis, color-coded by assay type. Results were conflicting for many years, but recent IP-MS studies provide promising AUC values for plasma Aβ42/40 measures. The diagnostic reference standard used in each study is listed in parentheses. For studies that used PET as a reference, the tracers include Pittsburg Compound B [, –21, 25], flutemetamol [17, 20, 22, 23], florbetapir [17, 18, 20, 22, 24], and florbetaben [20]. Abbreviations: Disc., Discovery; Val., Validation. Figure created with BioRender.com
Fig. 2
Fig. 2
Contrasting methods to measure plasma Aβ. Two common methods to measure plasma Aβ are IP-MS assays (left) and immunoassays (right). In IP-MS assays, the detector measures Aβ species directly and quantitation is performed with an internal standard of stable isotope-labeled Aβ. In immunoassays, Aβ species are measured indirectly with antibody binding, and a different detection antibody must be used for each Aβ isoform. Immunoassays perform quantitation with an external standard. The immunoassay depicted in this figure is a plate-based sandwich immunoassay; bead-based immunoassays are also common, using fluorescently barcoded beads bound to an antibody for indirect measuring of a target. Figure created with BioRender.com
Fig. 3
Fig. 3
Forest plots of all AUC values with PET and CSF references. The points are categorized and color-coded by assay type, and the horizontal bars represent a 95% confidence interval. Blue is IP-MS assay, yellow is ECL, orange is an antibody-free LC-MS assay, green is ELISA, and red is SIMOA. The black diamond symbols represent the weighted average of the assays for each category, and within categories, the assay name is listed on the y-axis. The size of each point corresponds to the sample size of the cohort and the diagnostic accuracy of AUC values is depicted on a scale below the x-axis [27]. Abbreviations: WashU, Washington University; Univ. Got., University of Gothenburg

References

    1. Ashford MT, Veitch DP, Neuhaus J, Nosheny RL, Tosun D, Weiner MW. The search for a convenient procedure to detect one of the earliest signs of Alzheimer’s disease: a systematic review of the prediction of brain amyloid status. Alzheimers Dement. 2021;17:866–887. doi: 10.1002/alz.12253. - DOI - PubMed
    1. Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27(6):954–963. doi: 10.1038/s41591-021-01382-x. - DOI - PubMed
    1. Chong JR, Ashton NJ, Karikari TK, Tanaka T, Schöll M, Zetterberg H, et al. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer’s disease: a focused review on recent advances. J Neurol Neurosurg Psychiatry. 2021;92(11):1231–1241. doi: 10.1136/jnnp-2021-327370. - DOI - PubMed
    1. Bateman RJ, Blennow K, Doody R, Hendrix S, Lovestone S, Salloway S, et al. Plasma biomarkers of AD emerging as essential tools for drug development: an EU/US CTAD Task Force report. J Prev Alzheimers Dis. 2019;6(3):169–173. - PubMed
    1. McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ. The informed road map to prevention of Alzheimer disease: a call to arms. Mol Neurodegener. 2021;16(1):49. doi: 10.1186/s13024-021-00467-y. - DOI - PMC - PubMed

Publication types

MeSH terms