Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 13;25(1):125-129.
doi: 10.1021/acs.orglett.2c03924. Epub 2022 Dec 29.

Accessing Chiral Pyrrolodiketopiperazines under Organocatalytic Conditions

Affiliations

Accessing Chiral Pyrrolodiketopiperazines under Organocatalytic Conditions

Eider Duñabeitia et al. Org Lett. .

Abstract

The production of chiral pyrrolodiketopiperazines under organocatalytic conditions demonstrates the capacity of bicyclic acylpyrrol lactims to perform as pronucleophiles in direct carbon-carbon bond forming reactions. The good performance of ureidoaminal-derived Brønsted bases in the Michael addition to nitroolefins affords these heterocyclic scaffolds with high skeleton diversity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Selected pyrrolodiketopyperazines and pyrrolopyrazinone compounds.
Figure 2
Figure 2
(A) Structural modularity of the pyrrolodiketopierazine skeleton for drug discovery. (B) Precedents for the synthesis of tetrasubstituted pyrrolodiketopierazines. (C) Present work: proof of concept.
Scheme 1
Scheme 1. Evaluation of Catalysts and Conditions for the Michael Addition
Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), catalyst (10 mol %), solvent (0.3 mL). Isolated yields. Diastereomeric ratio and enantioselectivity determined by chiral HPLC.
Scheme 2
Scheme 2. Scope of the Enantioselective Michael Addition
Figure 3
Figure 3
Impact of concentration and catalyst loading on stereoselectivity. Most stable computed conformation of C7 in toluene.
Scheme 3
Scheme 3. (a) Production of the Target Chiral Pyrrolopyrazinones 4; (b) Modified Pyrrolopyrazinones 4 under Mild Conditions

References

    1. Shiokawa Z.; Kashiwabara E.; Yoshidome D.; Fukase K.; Inuki S.; Fujimoto Y. Discovery of a Novel Scaffold as an Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Based on the Pyrrolopiperazinone Alkaloid, Longamide B. ChemMedChem. 2016, 11, 2682–2689. 10.1002/cmdc.201600446. - DOI - PubMed
    2. Jansen R.; Sood S.; Mohr K. I.; Kunze B.; Irschik H.; Stadler M.; Müller R. Nannozinones and Sorazinones, Unprecedented Pyrazinones from Myxobacteria. J. Nat. Prod. 2014, 77, 2545–2552. 10.1021/np500632c. - DOI - PubMed
    3. Song F. H.; Liu X. R.; Guo H.; Ren B.; Chen C. X.; Piggott A. M.; Yu K.; Gao H.; Wang Q.; Liu M.; Liu X. T.; Dai H. Q.; Zhang L. X.; Capon R. J. Brevianamides with Antitubercular Potential from a Marine-Derived Isolate of Aspergillus versicolor. Org. Lett. 2012, 14, 4770–4773. 10.1021/ol302051x. - DOI - PubMed
    4. Miyashiro J.; Woods K. W.; Park C. H.; Liu X.; Shi Y.; Johnson E. F.; Bouska J. J.; Olson A. M.; Luo Y.; Fry E. H.; Giranda V. L.; Penning T. D. Synthesis and SAR of novel tricyclic quinoxalinone inhibitors of poly(ADPribose) polymerase-1 (PARP-1). Bioorg. Med. Chem. Lett. 2009, 19, 4050–4054. 10.1016/j.bmcl.2009.06.016. - DOI - PubMed
    5. Rowan D. D.; Hunt M. B.; Gaynor D. L. Peramine, a novel insect feeding deterrent from ryegrass infected with the endophyte acremonium-ioliae. J. Chem. Soc., Chem. Commun. 1986, 935–936. 10.1039/c39860000935. - DOI - PubMed
    1. Trigos A. Macrophominol, a diketopiperazine from cultures of Macrophomina phaseolina. Phytochemistry 1995, 40, 1697–1698. 10.1016/0031-9422(95)00626-I. - DOI
    2. Cafieri F.; Fattorusso E.; Taglialatela-Scafati O. Novel Bromopyrrole Alkaloids from the Sponge Agelas dispar. J. Nat. Prod. 1998, 61, 122–125. 10.1021/np970323h. - DOI - PubMed
    3. See ref (1b)

    1. See, for instance:

    2. Huigens R. W. III; Morrison K. C.; Hickling R. W.; Flood T. A. Jr.; Richter M. F.; Hergenrother P. J. A ring distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nat. Chem. 2013, 5, 195–202. 10.1038/nchem.1549. - DOI - PMC - PubMed
    3. Rafferty R. J.; Hicklin R. W.; Maloof K. A.; Hergenrother P. J. Synthesis of complex and diverse compounds through ring distortion of abietic acid. Angew. Chem., Int. Ed. 2014, 53, 220–224. 10.1002/anie.201308743. - DOI - PubMed
    1. See, for instance:van Hattum H.; Waldmann H. Biology-Oriented Synthesis: Harnessing the Power of Evolution. J. Am. Chem. Soc. 2014, 136, 11853–11859. 10.1021/ja505861d. - DOI - PubMed
    1. See, for instance:Galloway W. R. J. D.; Isidro-Llobet A.; Spring D. R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 2010, 1, 80.10.1038/ncomms1081. - DOI - PubMed

Publication types