Design and synthesis of improved active-site SHP2 inhibitors with anti-breast cancer cell effects
- PMID: 36584630
- DOI: 10.1016/j.ejmech.2022.115017
Design and synthesis of improved active-site SHP2 inhibitors with anti-breast cancer cell effects
Abstract
The Src homology containing phosphotyrosyl phosphatase 2 (SHP2) is a bona fide oncogene particularly in cancers driven by overexpression of receptor tyrosine kinases (RTKs). As such, there is a growing interest to target SHP2 in cancer. Based on these premises, several active site (type I) and allosteric site (type II) inhibitors have been developed, but no SHP2 targeting therapies have reached the clinic yet. In an effort to fill these gaps, we embarked on producing optimized versions of our parent active-site SHP2 inhibitor CNBDA. The objectives were to produce derivatives with increased inhibitory potential and improved selectivity. Accordingly, we designed derivatives around the CNBDA scaffold and predicted their binding property by in silico molecular modeling. Based on comparative differences in free energy of binding to the SHP2 versus the SHP1 active sites, ten were selected, chemically synthesized, and evaluated by NMR and mass spectroscopy for structural integrity. Among the ten derivatives, BPDA2 was found to be the most potent and highly selective compound, inhibiting the SHP2 enzyme activity with an IC50 of 92 nM when DiFMUP was used as a substrate and with an IC50 of 47 nM when pNPP was used as a substrate. Furthermore, enzyme kinetic analyses showed that BPDA2 is a competitive SHP2 inhibitor. Selectivity comparisons in a PTPase assay using DiFMUP as a substrate demonstrated that BPDA2 is more selective to SHP2 than to SHP1 and PTP1B by more than 369-fold and 442-fold, respectively. Evaluation with a cellular thermal shift assay (CETSA) confirmed that BPDA2 binds to wild-type SHP2 in a cellular context, and stabilizes it in solution. Treatment of cells with DBDA2 downregulates mitogenic and cell survival signaling and RTK expression in a concentration dependent manner. Furthermore, treatment of cells with BPDA2 suppresses anchorage independent growth and cancer stem cell properties of breast cancer cells. Overall, data described in this report show that BPDA2 is a more potent derivative of CNBDA with a highly improved selectivity for SHP2.
Copyright © 2022. Published by Elsevier Masson SAS.
Conflict of interest statement
Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Yehenew M Agazie reports financial support was provided by National Cancer Institute. Yehenew M Agazie reports a relationship with West Virginia University Health Sciences Center that includes: employment and non-financial support. None.
Similar articles
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.Health Technol Assess. 2001;5(32):1-195. doi: 10.3310/hta5320. Health Technol Assess. 2001. PMID: 12065068
-
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340. Health Technol Assess. 2006. PMID: 16959170
-
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2. Cochrane Database Syst Rev. 2022. PMID: 36161421 Free PMC article.
Cited by
-
Crystal structure of an aceto-nitrile solvate of 2-(3,4,5-triphen-ylphen-yl)acetic acid.Acta Crystallogr E Crystallogr Commun. 2024 Oct 24;80(Pt 11):1198-1201. doi: 10.1107/S2056989024009976. eCollection 2024 Oct 1. Acta Crystallogr E Crystallogr Commun. 2024. PMID: 39712148 Free PMC article.
-
Design, Synthesis, Antitumor Activity Evaluation, and Molecular Dynamics Simulation of Some 2-aminopyrazine Derivatives.Curr Comput Aided Drug Des. 2025;21(5):639-654. doi: 10.2174/0115734099285448240304072649. Curr Comput Aided Drug Des. 2025. PMID: 38485684
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Chemical Information
Medical
Research Materials
Miscellaneous