Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects
- PMID: 36584930
- DOI: 10.1016/j.micpath.2022.105963
Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects
Abstract
Globally, the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the major cause of nosocomial infections. These pathogens are multidrug resistant, and their negative impacts have brought serious health challenges and economic burden on many countries worldwide. Thus, this narrative review exploits different emerging alternative therapeutic strategies including combination antibiotics, antimicrobial peptides ((AMPs), bacteriophage and photodynamic therapies used in the treatment of the ESKAPE pathogens, their merits, limitations, and future prospects. Our findings indicate that ESKAPE pathogens exhibit resistance to drug using different mechanisms including drug inactivation by irreversible enzyme cleavage, drug-binding site alteration, diminution in permeability of drug or drug efflux increment to reduce accumulation of drug as well as biofilms production. However, the scientific community has shown significant interest in using these novel strategies with numerous benefits although they have some limitations including but not limited to instability and toxicity of the therapeutic agents, or the host developing immune response against the therapeutic agents. Thus, comprehension of resistance mechanisms of these pathogens is necessary to further develop or modify these approaches in order to overcome these health challenges including the barriers of bacterial resistance.
Keywords: Antibiotics; Antimicrobial peptides; Bacteriophage; ESKAPE pathogens; Photodynamic therapy.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
