Biodegradation of the Pesticides Bifenthrin and Fipronil by Bacillus Isolated from Orange Leaves
- PMID: 36585549
- DOI: 10.1007/s12010-022-04294-9
Biodegradation of the Pesticides Bifenthrin and Fipronil by Bacillus Isolated from Orange Leaves
Abstract
The pyrethroid bifenthrin and the phenylpyrazole fipronil are widely employed insecticides, and their extensive use became an environmental issue. Therefore, this study evaluated their biodegradation employing bacterial strains of Bacillus species isolated from leaves of orange trees, aiming at new biocatalysts with high efficiency for use singly and in consortium. Experiments were performed in liquid culture medium at controlled temperature and stirring (32 °C, 130 rpm). After 5 days, residual quantification by HPLC-UV/Vis showed that Bacillus amyloliquefaciens RFD1C presented 93% biodegradation of fipronil (10.0 mg.L-1 initial concentration) and UPLC-HRMS analyses identified the metabolite fipronil sulfone. Moreover, Bacillus pseudomycoides 3RF2C showed a biodegradation of 88% bifenthrin (30.0 mg.L-1 initial concentration). A consortium composed of the 8 isolated strains biodegraded 81% fipronil and 51% bifenthrin, showing that this approach did not promote better results than the most efficient strains employed singly, although high rates of biodegradation were observed. In conclusion, bacteria of the Bacillus genus isolated from leaves of citrus biodegraded these pesticides widely applied to crops, showing the importance of the plant microbiome for degradation of toxic xenobiotics.
Keywords: Bacteria; Bioremediation; Biotransformation; Fipronil sulfone; Insecticide; Pyrethroid.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
Biodegradation of the pyrethroid cypermethrin by bacterial consortia collected from orange crops.Environ Res. 2022 Dec;215(Pt 3):114388. doi: 10.1016/j.envres.2022.114388. Epub 2022 Sep 22. Environ Res. 2022. PMID: 36152890
-
The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium.Pestic Biochem Physiol. 2019 May;156:129-137. doi: 10.1016/j.pestbp.2019.02.014. Epub 2019 Feb 22. Pestic Biochem Physiol. 2019. PMID: 31027572
-
Biodegradation of the fungicide Pyraclostrobin by bacteria from orange cultivation plots.Sci Total Environ. 2020 Dec 1;746:140968. doi: 10.1016/j.scitotenv.2020.140968. Epub 2020 Jul 17. Sci Total Environ. 2020. PMID: 32763599
-
Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives.Appl Microbiol Biotechnol. 2021 Oct;105(20):7695-7708. doi: 10.1007/s00253-021-11605-3. Epub 2021 Sep 29. Appl Microbiol Biotechnol. 2021. PMID: 34586458 Review.
-
A comprehensive review of environmental fate and degradation of fipronil and its toxic metabolites.Environ Res. 2021 Aug;199:111316. doi: 10.1016/j.envres.2021.111316. Epub 2021 May 11. Environ Res. 2021. PMID: 33989624 Review.
Cited by
-
Fipronil Degradation in Soil by Enterobacter chengduensis Strain G2.8: Metabolic Perspective.Life (Basel). 2023 Sep 20;13(9):1935. doi: 10.3390/life13091935. Life (Basel). 2023. PMID: 37763338 Free PMC article.
-
Bifenthrin's Environmental Fate: An Insight Into Its Soil Sorption and Degradation Studies.J Anal Methods Chem. 2024 Nov 25;2024:8868954. doi: 10.1155/jamc/8868954. eCollection 2024. J Anal Methods Chem. 2024. PMID: 39628984 Free PMC article.
-
Biodegradation of fipronil: Molecular characterization, degradation kinetics, and metabolites.Res Sq [Preprint]. 2023 Jun 6:rs.3.rs-2885549. doi: 10.21203/rs.3.rs-2885549/v1. Res Sq. 2023. Update in: Environ Sci Pollut Res Int. 2023 Oct;30(48):106316-106329. doi: 10.1007/s11356-023-29837-3. PMID: 37333229 Free PMC article. Updated. Preprint.
-
Biotransformation of selected secondary metabolites by Alternaria species and the pharmaceutical, food and agricultural application of biotransformation products.Nat Prod Bioprospect. 2024 Aug 19;14(1):46. doi: 10.1007/s13659-024-00469-5. Nat Prod Bioprospect. 2024. PMID: 39158793 Free PMC article. Review.
References
-
- Pignati, W. A., Lima, F. A. N. S., Lara, S. S., Correa, M. L. M., Barbosa, J. R., Leão, L. H. C., & Pignatti, M. G. (2017). Distribuição espacial do uso de agrotóxicos no Brasil: Uma ferramenta para a Vigilância em Saúde. Ciência & Saúde Coletiva, 22(10), 3281–3293. https://doi.org/10.1590/1413-812320172210.17742017 - DOI
-
- Lindsey, A. P. J., Murugan, S., & Renitta, R. E. (2020). Microbial disease management in agriculture: Current status and future prospects. Biocatalysis and Agricultural Biotechnology, 23, 101468. https://doi.org/10.1016/J.BCAB.2019.101468 - DOI
-
- Braga, A. R. C., de Rosso, V. V., Harayashiki, C. A. Y., Jimenez, P. C., & Castro, Í. B. (2020). Global health risks from pesticide use in Brazil. Nature Food, 1(6), 312–314. https://doi.org/10.1038/s43016-020-0100-3 - DOI
-
- Brazilian Institute of Geography and Statistics. (2022). Statistics of Agricultural Production. Retrieved from https://sidra.ibge.gov.br/home/lspa . Accessed 2 Apr 2022
-
- Brazilian Institute of the Environment and Renewable Natural Resources. (2021). Pesticides marketing reports. Retrieved from http://ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotox... . Accessed 2 Apr 2022
MeSH terms
Substances
Grants and funding
- 2017/24429-7/Fundação de Amparo à Pesquisa do Estado de São Paulo
- 2014/18257-0/Fundação de Amparo à Pesquisa do Estado de São Paulo
- 2017/19721-0/Fundação de Amparo à Pesquisa do Estado de São Paulo
- 141656/2014-0/Conselho Nacional de Desenvolvimento Científico e Tecnológico
- 400202/2014-0/Conselho Nacional de Desenvolvimento Científico e Tecnológico
LinkOut - more resources
Full Text Sources
Medical