Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 1:220:115169.
doi: 10.1016/j.envres.2022.115169. Epub 2022 Dec 29.

Techno-economic assessment of hydrotreated vegetable oil as a renewable fuel from waste sludge palm oil

Affiliations

Techno-economic assessment of hydrotreated vegetable oil as a renewable fuel from waste sludge palm oil

Cui Jun Hor et al. Environ Res. .

Abstract

To date, the development of renewable fuels has become a normal phenomenon to solve the problem of diesel fuel emissions and the scarcity of fossil fuels. Biodiesel production has some limitations, such as two-step processes requiring high free fatty acids (FFAs), oil feedstocks and gum formation. Hydrotreated vegetable oil (HVO) is a newly developed international renewable diesel that uses renewable feedstocks via the hydrotreatment process. Unlike FAME, FFAs percentage doesn't affect the HVO production and sustains a higher yield. The improved characteristics of HVO, such as a higher cetane value, better cold flow properties, lower emissions and excellent oxidation stability for storage, stand out from FAME biodiesel. Moreover, HVO is a hydrocarbon without oxygen content, but FAME is an ester with 11% oxygen content which makes it differ in oxidation stability. Waste sludge palm oil (SPO), an abundant non-edible industrial waste, was reused and selected as the feedstock for HVO production. Techno-economical and energy analyses were conducted for HVO production using Aspen HYSYS with a plant capacity of 25,000 kg/h. Alternatively, hydrogen has been recycled to reduce the hydrogen feed. With a capital investment of RM 65.86 million and an annual production cost of RM 332.56 million, the base case of the SPO-HVO production process was more desirable after consideration of all economic indicators and HVO purity. The base case of SPO-HVO production could achieve a return on investment (ROI) of 89.03% with a payback period (PBP) of 1.68 years. The SPO-HVO production in this study has observed a reduction in the primary greenhouse gas, carbon dioxide (CO2) emission by up to 90% and the total annual production cost by nearly RM 450 million. Therefore, SPO-HVO production is a potential and alternative process to produce biobased diesel fuels with waste oil.

Keywords: Hydrotreated vegetable oil; Sludge palm oil; Techno-economic.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types