Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2023 Feb;49(2):262-263.
doi: 10.1007/s00134-022-06961-1. Epub 2023 Jan 2.

Database-based machine learning in sepsis deserves attention

Affiliations
Comment

Database-based machine learning in sepsis deserves attention

Wenhan Hu et al. Intensive Care Med. 2023 Feb.
No abstract available

PubMed Disclaimer

Comment in

Comment on

  • Machine-learning-derived sepsis bundle of care.
    Kalimouttou A, Lerner I, Cheurfa C, Jannot AS, Pirracchio R. Kalimouttou A, et al. Intensive Care Med. 2023 Jan;49(1):26-36. doi: 10.1007/s00134-022-06928-2. Epub 2022 Nov 29. Intensive Care Med. 2023. PMID: 36446854

References

    1. Kalimouttou A, Lerner I, Cheurfa C et al (2022) Machine-learning-derived sepsis bundle of care. Intensive Care Med. https://doi.org/10.1007/s00134-022-06928-2 - DOI - PubMed
    1. Reyna MA, Josef CS, Jeter R et al (2020) Early prediction of sepsis from clinical data: the physionet/computing in cardiology challenge 2019. Crit Care Med 48(2):210–217 - DOI - PubMed - PMC
    1. Seymour CW, Gesten F, Prescott HC et al (2017) Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 376(23):2235–2244 - DOI - PubMed - PMC
    1. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA (2022) MIMIC‑IV (version 2.1). PhysioNet 2022. https://physionet.org/content/mimiciv/2.1/
    1. Pollard TJ, Johnson AEW, Raffa JD et al (2018) eICU Collaborative Research Database. https://physionet.org/content/eicu-crd/2.0/

LinkOut - more resources