Co-evolution-based prediction of metal-binding sites in proteomes by machine learning
- PMID: 36593274
- DOI: 10.1038/s41589-022-01223-z
Co-evolution-based prediction of metal-binding sites in proteomes by machine learning
Abstract
Metal ions have various important biological roles in proteins, including structural maintenance, molecular recognition and catalysis. Previous methods of predicting metal-binding sites in proteomes were based on either sequence or structural motifs. Here we developed a co-evolution-based pipeline named 'MetalNet' to systematically predict metal-binding sites in proteomes. We applied MetalNet to proteomes of four representative prokaryotic species and predicted 4,849 potential metalloproteins, which substantially expands the currently annotated metalloproteomes. We biochemically and structurally validated previously unannotated metal-binding sites in several proteins, including apo-citrate lyase phosphoribosyl-dephospho-CoA transferase citX, an Escherichia coli enzyme lacking structural or sequence homology to any known metalloprotein (Protein Data Bank (PDB) codes: 7DCM and 7DCN ). MetalNet also successfully recapitulated all known zinc-binding sites from the human spliceosome complex. The pipeline of MetalNet provides a unique and enabling tool for interrogating the hidden metalloproteome and studying metal biology.
© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.
Similar articles
-
A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data.BMC Bioinformatics. 2011 Feb 28;12:64. doi: 10.1186/1471-2105-12-64. BMC Bioinformatics. 2011. PMID: 21356119 Free PMC article.
-
Bioinformatics of Metalloproteins and Metalloproteomes.Molecules. 2020 Jul 24;25(15):3366. doi: 10.3390/molecules25153366. Molecules. 2020. PMID: 32722260 Free PMC article. Review.
-
Metalloproteomes: a bioinformatic approach.Acc Chem Res. 2009 Oct 20;42(10):1471-9. doi: 10.1021/ar900015x. Acc Chem Res. 2009. PMID: 19697929 Review.
-
Microbial metalloproteomes are largely uncharacterized.Nature. 2010 Aug 5;466(7307):779-82. doi: 10.1038/nature09265. Epub 2010 Jul 18. Nature. 2010. PMID: 20639861
-
Identification of metal-binding proteins in human hepatoma lines by immobilized metal affinity chromatography and mass spectrometry.Mol Cell Proteomics. 2003 Dec;2(12):1306-18. doi: 10.1074/mcp.M300080-MCP200. Epub 2003 Oct 7. Mol Cell Proteomics. 2003. PMID: 14534351
Cited by
-
MetalHawk: Enhanced Classification of Metal Coordination Geometries by Artificial Neural Networks.J Chem Inf Model. 2024 Apr 8;64(7):2356-2367. doi: 10.1021/acs.jcim.3c00873. Epub 2023 Nov 13. J Chem Inf Model. 2024. PMID: 37956388 Free PMC article.
-
Using protein language models for protein interaction hot spot prediction with limited data.BMC Bioinformatics. 2024 Mar 16;25(1):115. doi: 10.1186/s12859-024-05737-2. BMC Bioinformatics. 2024. PMID: 38493120 Free PMC article.
-
MetalNet2: an enhanced server for predicting metal-binding sites in proteomes.Natl Sci Rev. 2024 Nov 5;11(12):nwae391. doi: 10.1093/nsr/nwae391. eCollection 2024 Dec. Natl Sci Rev. 2024. PMID: 39712664 Free PMC article. No abstract available.
-
Chemoproteomic Profiling Maps Zinc-Dependent Cysteine Reactivity.Chem Res Toxicol. 2024 Apr 15;37(4):620-632. doi: 10.1021/acs.chemrestox.3c00416. Epub 2024 Mar 14. Chem Res Toxicol. 2024. PMID: 38484110 Free PMC article.
-
Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes.Metallomics. 2024 Nov 7;16(11):mfae049. doi: 10.1093/mtomcs/mfae049. Metallomics. 2024. PMID: 39504489 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases