Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023;158(1):71-76.
doi: 10.1254/fpj.22086.

[State-of-the-art in respiratory disease research using respiratory organoids]

[Article in Japanese]
Affiliations
Review

[State-of-the-art in respiratory disease research using respiratory organoids]

[Article in Japanese]
Sayaka Deguchi et al. Nihon Yakurigaku Zasshi. 2023.

Abstract

The main function of the respiratory tract is gas exchange. Because dysfunction of gas exchange is lethal, a lot of people die of respiratory diseases every year. Many researchers are attempting to elucidate the pathophysiology of respiratory diseases and develop effective drugs using several in vitro respiratory models. Recently, respiratory organoids are widely used as human respiratory models. Respiratory organoids are self-organized three-dimensional tissue-like structures that are derived from pluripotent stem cells or tissue stem cells. Because respiratory organoids derived from a patient's stem cells carry its genetic mutation, they are widely used to recapitulate respiratory genetic diseases. It has been reported that some respiratory genetic diseases, such as cystic fibrosis, primary ciliary dyskinesia, pulmonary alveolar proteinosis, or Hermansky-Pudlak syndrome, could be recapitulated using respiratory organoids. Moreover, because respiratory organoids possess innate immune response activity, they are also used as a model for respiratory infectious diseases. It has been reported that some respiratory diseases which are caused by the infection of pathogens, such as respiratory syncytial virus, seasonal influenza viruses, human parainfluenza virus, measles virus, enterovirus, or cryptosporidium spp., could be reproduced using respiratory organoids. This review introduces the current status and future prospects of respiratory organoids in respiratory disease research.

PubMed Disclaimer

Similar articles