Morphofunctional analysis of fibroblast-like synoviocytes in human rheumatoid arthritis and mouse collagen-induced arthritis
- PMID: 36597166
- DOI: 10.1186/s42358-022-00281-0
Morphofunctional analysis of fibroblast-like synoviocytes in human rheumatoid arthritis and mouse collagen-induced arthritis
Erratum in
-
Correction to: Morphofunctional analysis of fibroblast-like synoviocytes in human rheumatoid arthritis and mouse collagen-induced arthritis.Adv Rheumatol. 2023 Feb 6;63(1):4. doi: 10.1186/s42358-023-00287-2. Adv Rheumatol. 2023. PMID: 36747261 No abstract available.
Abstract
Background: Fibroblast-like synoviocytes (FLS) play a prominent role in rheumatoid synovitis and degradation of the extracellular matrix through the production of inflammatory cytokines and metalloproteinases (MMPs). Since animal models are frequently used for elucidating the disease mechanism and therapeutic development, it is relevant to study the ultrastructural characteristics and functional responses in human and mouse FLS. The objective of the study was to analyze ultrastructural characteristics, Interleukin-6 (IL-6) and Metalloproteinase-3 (MMP-3) production and the activation of intracellular pathways in Fibroblast like synoviocytes (FLS) cultures obtained from patients with rheumatoid arthritis (RA) and from mice with collagen-induced arthritis (CIA).
Methods: FLSs were obtained from RA patients (RA-FLSs) (n = 8) and mice with CIA (CIA-FLSs) (n = 4). Morphology was assessed by transmission and scanning electron microscopy. IL-6 and MMP-3 production was measured by ELISA, and activation of intracellular signaling pathways (NF-κB and MAPK: p-ERK1/2, p-P38 and p-JNK) was measured by Western blotting in cultures of RA-FLSs and CIA-FLSs stimulated with tumor necrosis factor-alpha (TNF-α) and IL-1β.
Results: RA-FLS and CIA-FLS cultures exhibited rich cytoplasm, rough endoplasmic reticula and prominent and well-developed Golgi complexes. Transmission electron microscopy demonstrated the presence of lamellar bodies, which are cytoplasmic structures related to surfactant production, in FLSs from both sources. Increased levels of pinocytosis and numbers of pinocytotic vesicles were observed in RA-FLSs (p < 0.05). Basal production of MMP-3 and IL-6 was present in RA-FLSs and CIA-FLSs. Regarding the production of MMP-3 and IL-6 and the activation of signaling pathways, the present study demonstrated a lower response to IL-1β by CIA-FLSs than by RA-FLSs.
Conclusion: This study provides a comprehensive understanding of the biology of RA-FLS and CIA-FLS. The differences and similarities in ultrastructural morphology and important inflammatory cytokines shown, contribute to future in vitro studies using RA-FLS and CIA-FLS, in addition, they indicate that the adoption of CIA-FLS for studies should take careful and be well designed, since they do not completely resemble human diseases.
Keywords: Collagen-induced arthritis; Electronic microscopy; Fibroblast-like synoviocytes; Interleukin-6; Metalloproteinases; Rheumatoid arthritis; Signaling transduction.
© 2022. The Author(s).
References
-
- McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.
-
- Tu J, Hong W, Zhang P, Wang X, Korner H, Wei W. Ontology and function of fibroblast-like and macrophage-like synoviocytes: how do they talk to each other and can they be targeted for rheumatoid arthritis therapy? Front Immunol. 2018;9:1467.
-
- Croft AP, Naylor AJ, Marshall JL, Hardie DL, Zimmermann B, Turner J, Desanti G, Adams H, Yemm AI, Muller-Ladner U, Dayer JM, Neumann E, Filer A. Buckley CD : rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res Ther. 2016;18(1):270.
-
- Ekwall AKH, Eisler T, Anderberg C, Jin C, Karlsson N, Brisslert M, Bokarewa MI. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res Ther. 2011;13:40.
-
- Hammaker DR, Boyle DL, Chabaud-Riou M, Firestein GS. Regulation of c-Jun N-terminal kinase by MEKK-2 and mitogen-activated protein kinase kinase kinases in rheumatoid arthritis. J Immunol. 2004;172:1612–8.
Publication types
MeSH terms
Substances
LinkOut - more resources
Medical
Research Materials
Miscellaneous