Design, synthesis, and biological evaluation of quinoxalinone derivatives as potent BRD4 inhibitors
- PMID: 36599264
- DOI: 10.1016/j.bmc.2022.117152
Design, synthesis, and biological evaluation of quinoxalinone derivatives as potent BRD4 inhibitors
Abstract
The bromodomain-containing protein 4 (BRD4) has gained growing interest as an effective drug target for the treatment of hepatocellular carcinoma (HCC). Herein, we designed and synthesized a series of quinoxalinone derivatives as BRD4 inhibitors via scaffold hopping. The representative compound X9 showed potent BRD4 inhibitory activity (with IC50 = 82.3 nM), and preferable antiproliferative activity against HepG2 cells (with IC50 = 1.13 ± 0.07 μM), as well as less toxicity against GES-1 cells (with IC50 = 57.24 ± 5.46 μM). Furthermore, compound X9 dose-dependently inhibited colony formation and blocked the migration of HepG2 cells by down-regulating the expression of Snail and MMP-9 while up-regulating the E-cadherin and Occludin. Besides, compound X9 efficiently down-regulated the expression of c-Myc in HepG2 cells, induced apoptosis, and arrested at G0/G1 phase. In total, quinoxalinone was a potential core as BRD4 inhibitor and compound X9 might be effective for liver cancer therapy.
Keywords: Antitumor; BRD4 inhibitors; Quinoxalinone derivatives; c-Myc.
Copyright © 2022 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Chemical Information
Medical
Research Materials
Miscellaneous
