Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;613(7942):85-89.
doi: 10.1038/s41586-022-05392-8. Epub 2023 Jan 4.

Extreme redox variations in a superdeep diamond from a subducted slab

Affiliations

Extreme redox variations in a superdeep diamond from a subducted slab

Fabrizio Nestola et al. Nature. 2023 Jan.

Abstract

The introduction of volatile-rich subducting slabs to the mantle may locally generate large redox gradients, affecting phase stability, element partitioning and volatile speciation1. Here we investigate the redox conditions of the deep mantle recorded in inclusions in a diamond from Kankan, Guinea. Enstatite (former bridgmanite), ferropericlase and a uniquely Mg-rich olivine (Mg# 99.9) inclusion indicate formation in highly variable redox conditions near the 660 km seismic discontinuity. We propose a model involving dehydration, rehydration and dehydration in the underside of a warming slab at the transition zone-lower mantle boundary. Fluid liberated by dehydration in a crumpled slab, driven by heating from the lower mantle, ascends into the cooler interior of the slab, where the H2O is sequestered in new hydrous minerals. Consequent fractionation of the remaining fluid produces extremely reducing conditions, forming Mg-end-member ringwoodite. This fractionating fluid also precipitates the host diamond. With continued heating, ringwoodite in the slab surrounding the diamond forms bridgmanite and ferropericlase, which is trapped as the diamond grows in hydrous fluids produced by dehydration of the warming slab.

PubMed Disclaimer

References

    1. Palot, M., Pearson, D. G., Stern, R. A., Stachel, T. & Harris, J. W. Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochim. Cosmochim. Acta 139, 26–46 (2014). - DOI
    1. Stachel, T. Diamonds from the asthenosphere and the transition zone. Eur. J. Miner. 13, 883–892 (2001). - DOI
    1. Walter, M. J. et al. Primary carbonatite melt from deeply subducted oceanic crust. Nature 454, 622–625 (2008). - DOI
    1. Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R. & Wilding, M. C. in Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd (eds Fei, Y., Bertka, C. M. & Mysen, B. O.) 125–153 (The Geochemical Society, 1999).
    1. Stachel, T., Harris, J. W., Brey, G. P. & Joswig, W. Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib. Mineral. Petrol. 140, 16–27 (2000). - DOI

Publication types

LinkOut - more resources