Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023;23(6):481-490.
doi: 10.2174/1568026623666230104125104.

Adhesion Molecules as Prognostic Biomarkers in Coronary Artery Disease

Affiliations
Review

Adhesion Molecules as Prognostic Biomarkers in Coronary Artery Disease

Marios Sagris et al. Curr Top Med Chem. 2023.

Abstract

Atherosclerosis is a progressive disease, culminating in the production of atherosclerotic plaques in arteries through intricate pathophysiological processes. The progression of this disorder is based on the effect of triggering factors -mainly hyperlipidemia, diabetes mellitus, arterial hypertension, and smoking- on the endothelium. Coronary artery disease (CAD) is an atherosclerotic disease with a higher prevalence among individuals. Pro- and anti-inflammatory cytokines are the main contributors to atherosclerotic plaque formation. CAD and its manifestations multifactorial affect patients' quality of life, burdening the global healthcare system. Recently, the role of adhesion molecules in CAD progression has been recognized. Physicians delve into the pathophysiologic basis of CAD progression, focusing on the effect of adhesion molecules. They are proteins that mediate cell-cell and cell-extracellular matrix interaction and adhesion, driving the formation of atherosclerotic plaques. Several studies have assessed their role in atherosclerotic disease in small cohorts and in experimental animal models as well. Furthermore, several agents, such as nanoparticles, have been introduced modifying the main atherosclerotic risk factors as well as targeting the endothelial inflammatory response and atherosclerotic plaque stabilization. In this review, we discuss the role of adhesion molecules in atherosclerosis and CAD progression, as well as the potential to be used as targeting moieties for individualized treatment.

Keywords: Adhesion molecules; Atherosclerosis; Coronary artery disease; Cytokines; Depressive disorders; Nanoparticles.

PubMed Disclaimer