Molecular-dynamics simulation methods for macromolecular crystallography
- PMID: 36601807
- PMCID: PMC9815100
- DOI: 10.1107/S2059798322011871
Molecular-dynamics simulation methods for macromolecular crystallography
Abstract
It is investigated whether molecular-dynamics (MD) simulations can be used to enhance macromolecular crystallography (MX) studies. Historically, protein crystal structures have been described using a single set of atomic coordinates. Because conformational variation is important for protein function, researchers now often build models that contain multiple structures. Methods for building such models can fail, however, in regions where the crystallographic density is difficult to interpret, for example at the protein-solvent interface. To address this limitation, a set of MD-MX methods that combine MD simulations of protein crystals with conventional modeling and refinement tools have been developed. In an application to a cyclic adenosine monophosphate-dependent protein kinase at room temperature, the procedure improved the interpretation of ambiguous density, yielding an alternative water model and a revised protein model including multiple conformations. The revised model provides mechanistic insights into the catalytic and regulatory interactions of the enzyme. The same methods may be used in other MX studies to seek mechanistic insights.
Keywords: conformational ensembles; molecular-dynamics simulations; protein kinases; water structure.
open access.
Figures








Similar articles
-
Molecular-dynamics simulations of macromolecular diffraction, part II: Analysis of protein crystal simulations.Methods Enzymol. 2023;688:115-143. doi: 10.1016/bs.mie.2023.06.012. Epub 2023 Aug 18. Methods Enzymol. 2023. PMID: 37748824
-
Biomolecular Solvation Structure Revealed by Molecular Dynamics Simulations.J Am Chem Soc. 2019 Mar 20;141(11):4711-4720. doi: 10.1021/jacs.8b13613. Epub 2019 Mar 11. J Am Chem Soc. 2019. PMID: 30834751 Free PMC article.
-
Molecular-dynamics simulations of macromolecular diffraction, part I: Preparation of protein crystal simulations.Methods Enzymol. 2023;688:87-114. doi: 10.1016/bs.mie.2023.06.008. Epub 2023 Aug 17. Methods Enzymol. 2023. PMID: 37748833
-
Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.Adv Exp Med Biol. 2018;1105:237-258. doi: 10.1007/978-981-13-2200-6_15. Adv Exp Med Biol. 2018. PMID: 30617833 Review.
-
Advances in implicit models of water solvent to compute conformational free energy and molecular dynamics of proteins at constant pH.Adv Protein Chem Struct Biol. 2011;85:281-322. doi: 10.1016/B978-0-12-386485-7.00008-9. Adv Protein Chem Struct Biol. 2011. PMID: 21920327 Review.
Cited by
-
The Open Force Field Initiative: Open Software and Open Science for Molecular Modeling.J Phys Chem B. 2024 Jul 25;128(29):7043-7067. doi: 10.1021/acs.jpcb.4c01558. Epub 2024 Jul 11. J Phys Chem B. 2024. PMID: 38989715 Free PMC article.
-
Structure-Based Experimental Datasets for Benchmarking Protein Simulation Force Fields [Article v0.1].ArXiv [Preprint]. 2025 Mar 25:arXiv:2303.11056v2. ArXiv. 2025. PMID: 40196146 Free PMC article. Preprint.
-
Changes in an enzyme ensemble during catalysis observed by high-resolution XFEL crystallography.Sci Adv. 2024 Mar 29;10(13):eadk7201. doi: 10.1126/sciadv.adk7201. Epub 2024 Mar 27. Sci Adv. 2024. PMID: 38536910 Free PMC article.
-
Functional Protein Dynamics in a Crystal.bioRxiv [Preprint]. 2024 Mar 24:2023.07.06.548023. doi: 10.1101/2023.07.06.548023. bioRxiv. 2024. Update in: Nat Commun. 2024 Apr 15;15(1):3244. doi: 10.1038/s41467-024-47473-4. PMID: 37461732 Free PMC article. Updated. Preprint.
-
Differential Behavior of Conformational Dynamics in Active and Inactive States of Cannabinoid Receptor 1.J Phys Chem B. 2024 Sep 5;128(35):8437-8447. doi: 10.1021/acs.jpcb.4c02828. Epub 2024 Aug 22. J Phys Chem B. 2024. PMID: 39169808 Free PMC article.
References
-
- Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B. & Lindahl, E. (2015). SoftwareX, 1–2, 19–25.
-
- Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). Acta Cryst. D66, 213–221. - PMC - PubMed
MeSH terms
Substances
Grants and funding
- GM108889/NH/NIH HHS/United States
- R01 GM108889/GM/NIGMS NIH HHS/United States
- GM124270/NH/NIH HHS/United States
- GM123159/NH/NIH HHS/United States
- GM124149/NH/NIH HHS/United States
- GM132386/NH/NIH HHS/United States
- R01 GM132386/GM/NIGMS NIH HHS/United States
- R35 GM130389/GM/NIGMS NIH HHS/United States
- R01 GM123159/GM/NIGMS NIH HHS/United States
- R01 GM124149/GM/NIGMS NIH HHS/United States
- R01 GM124270/GM/NIGMS NIH HHS/United States
- T32 CA009523/CA/NCI NIH HHS/United States
- GM130389/NH/NIH HHS/United States
- T32 CA009523/CA/NCI/NH/NIH HHS/United States