Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea
- PMID: 36603235
- DOI: 10.1016/j.marpolbul.2022.114498
Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea
Abstract
We investigated the impact of invasive vegetation on mercury cycles, and identified microorganisms directly related to Hg(II) methylation using hgcA gene in vegetated mud flats (VMF) inhabited by native Suaeda japonica (SJ) and invasive Spartina anglica (SA), and unvegetated mud flats (UMF) in Ganghwa intertidal sediments. Sulfate reduction rate (SRR) and rate constants of Hg(II) methylation (Km) and methyl-Hg demethylation (Kd) were consistently greater in VMF than in UMF, specifically 1.5, 2 and 11.7 times higher, respectively, for SA. Both Km and Kd were significantly correlated with SRR and the abundance of sulfate-reducing bacteria. These results indicate that the rhizosphere of invasive SA provides a hotspot for Hg dynamics coupled with sulfate reduction. HgcA gene analysis revealed that Hg(II)-methylators were dominated by Deltaproteobacteria, Chloroflexi and Euryarchaeota, comprising 37.9%, 35.8%, and 6.5% of total hgcA gene sequences, respectively, which implies that coastal sediments harbor diverse Hg(II)-methylating microorganisms that previously underrepresented.
Keywords: Hg(II) methylation; Hg(II)-methylating microbial communities; MeHg demethylation; Sulfate reduction; Vegetated intertidal sediment; hgcA gene.
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical