Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 5;12(1):1.
doi: 10.1186/s13756-022-01207-7.

A pseudo-outbreak of MRSA due to laboratory contamination related to MRSA carriage of a laboratory staff member

Affiliations

A pseudo-outbreak of MRSA due to laboratory contamination related to MRSA carriage of a laboratory staff member

Karlijn M G Houkes et al. Antimicrob Resist Infect Control. .

Abstract

Background: Methicillin resistant Staphylococcus aureus (MRSA) is a major burden for hospitals globally. However, in the Netherlands, the MRSA prevalence is relatively low due to the 'search and destroy' policy. Routine multiple-locus variable-number of tandem repeat analysis (MLVA) of MRSA isolates supports outbreak detection. However, whole genome multiple locus sequence typing (wgMLST) is superior to MLVA in identifying (pseudo-)outbreaks with MRSA. The present study describes a pseudo-outbreak of MRSA at the bacteriology laboratory of a large Dutch teaching hospital.

Methods: All staff members of the bacteriology laboratory of the Elisabeth-TweeSteden hospital were screened for MRSA carriage, after a laboratory contamination with MRSA was suspected. Clonal relatedness between the index isolate and the MRSA isolates from laboratory staff members and all previous MRSA isolates from the Elisabeth-TweeSteden hospital with the same MLVA-type as the index case was examined based on wgMLST using whole genome sequencing.

Results: One of the staff members was identified as the probable source of the laboratory contamination, because of carriage of a MRSA possessing the same MLVA-type as the index case. Eleven other isolates with the same molecular characteristics were found in the database, of which seven were retrospectively suspected of contamination. Clonal relatedness was found between ten isolates, including the isolate found in the staff member and the MRSA found in the index patient with a maximum of eleven alleles difference. All isolates were epidemiologically linked through the laboratory staff member, who had worked on all these cultures.

Conclusions: The present study describes a MRSA pseudo-outbreak over a 2.5-year period due to laboratory contamination caused by a MRSA carrying laboratory staff member involving nine patients. In case of unexpected bacteriological findings, the possibility of a laboratory contamination should be considered.

Keywords: Contamination; MRSA; Pseudo-outbreak; wgMLST.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Neighbor-joining tree of MRSA isolates based on wgMLST. The horizontal distance corresponds to the absolute number of allelic differences between isolates. Details of the isolates are depicted in Table 1. The pseudo-outbreak cluster is indicated in red with a maximum allelic difference of 11 alleles. The isolates in blue do have the same MLVA characteristics, but form a separate cluster. Green indicates the MRSA isolates with other MLVA characteristics, including control strain ATCC43300. The number of allelic differences (or range) between clusters are indicated in black and within clusters in red or blue corresponding to the cluster color
Fig. 2
Fig. 2
Timeline of the pseudo-outbreak cluster due to laboratory contamination. The MRSA isolates belonging to the cluster are indicated with a diamond shape on the point in time when the isolate was first cultured. The MRSA isolate found in the staff member with the same MLVA type is indicated in red

References

    1. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751–762. doi: 10.1016/S1473-3099(05)70295-4. - DOI - PubMed
    1. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27:870–926. doi: 10.1128/CMR.00109-13. - DOI - PMC - PubMed
    1. EUCAST subcommittee for detection of resistance mechanisms. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and / or epidemiological importance. 2017.
    1. Weterings V, Veenemans J, van Rijen M, Kluytmans J. Prevalence of nasal carriage of methicillin-resistant Staphylococcus aureus in patients at hospital admission in The Netherlands, 2010–2017: an observational study. Clin Microbiol Infect. 2019;25:1428.e1–1428.e5. doi: 10.1016/j.cmi.2019.03.012. - DOI - PubMed
    1. Donker T, Bosch T, Ypma RJF, Haenen APJ, van Ballegooijen WM, Heck MEOC, et al. Monitoring the spread of meticillin-resistant Staphylococcus aureus in The Netherlands from a reference laboratory perspective. J Hosp Infect. 2016;93:366–374. doi: 10.1016/j.jhin.2016.02.022. - DOI - PMC - PubMed

MeSH terms