Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 15:328:117200.
doi: 10.1016/j.jenvman.2022.117200. Epub 2023 Jan 4.

Experimental investigation on electromagnetic induction thermal desorption for remediation of petroleum hydrocarbons contaminated soil

Affiliations

Experimental investigation on electromagnetic induction thermal desorption for remediation of petroleum hydrocarbons contaminated soil

Yongjie Xue et al. J Environ Manage. .

Abstract

A novel electromagnetic induction low temperature thermal desorption treatment (EMI LTTD) for petroleum hydrocarbons contaminated soil was introduced in this work. The removal rate of total petroleum hydrocarbons (TPH) under various factors, the morphology changes of soils as well as removal mechanism were investigated. Results suggested that increasing the heating temperature significantly increased the removal rate of TPH. At the beginning of 20 min, most of hydrocarbons (93.44-96.91 wt%) was removed with the temperature ranged from 200 °C to 300 °C. Besides, the initial contaminants concentration, particle size and thickness of soil slightly influenced the removal rate of TPH. Desorption kinetic study demonstrated that first-order model was well-described for desorption behavior. Response surface methodology analysis showed the temperature of 216 °C, the residence time of 21 min and the moisture content of 18% was an optimum condition recommended for potentially practical application. Under this condition, the results for the composition of hydrocarbons based on carbon number fractions indicated that the fractions of C10∼C16, C17∼C22 still existed in soil, while C23∼C28 was not detected after EMI LTTD treatment. Proposed mechanism was both hydrocarbons removed by evaporation at any temperature, while parts of heavy hydrocarbons was cracked within the soil close to induction medium, resulting in re-adsorption of light hydrocarbons. A buckwheat germination and growth test indicated that soil treated by EMI LTTD was potential in reutilization for planting.

Keywords: Electromagnetic induction; Petroleum hydrocarbons; Soil remediation; Thermal conduction; Thermal desorption.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources