Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar;42(3):561-574.
doi: 10.1007/s00299-023-02977-z. Epub 2023 Jan 7.

IiSVP of Isatis indigotica can reduce the size and repress the development of floral organs

Affiliations

IiSVP of Isatis indigotica can reduce the size and repress the development of floral organs

Qi Meng et al. Plant Cell Rep. 2023 Mar.

Abstract

IiSVP of Isatis indigotica was cloned and its expression pattern was analyzed. Ectopic expression of IiSVP in Arabidopsis could delay the flowering time and reduce the size of the floral organs. SVP (SHORT VEGETATIVE PHASE) can negatively regulate the flowering time of Arabidopsis. In the present work, the cDNA of IiSVP, an orthologous gene of AtSVP in I. indigotica, was cloned. IiSVP was highly expressed in rosette leaves, inflorescences and petals, but weakly expressed in sepals, pistils and young silicles. The results of subcellular localization showed that IiSVP was localized in nucleus. Bioinformatics analysis indicated that this protein was a MADS-box transcription factor. Constitutive expression of IiSVP in Arabidopsis thaliana resulted in decrease of the number of petals and stamens, and curly sepals were formed. In IiSVP transgenic Arabidopsis plants, obvious phenotypic variations in flowers could be observed, especially the size of the floral organs. In comparison with the wild-type plants, the size of petals, stamens and pistil in IiSVP transgenic Arabidopsis plants was decreased significantly. In some transgenic plants, the petals were wrapped by the sepals. Yeast two-hybrid experiments showed that IiSVP could form higher-order complexes with other MADS proteins, including IiSEP1, IiSEP3, IiAP1 and IiSEP4, but could not interact with IiSEP2. In this work, it was proved that the flowering process and the floral development in Arabidopsis could be affected by IiSVP from I. indigotica Fortune.

Keywords: Arabidopsis thaliana; Floral development; Floral organs; IiSVP; Isatis indigotica Fortune.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Airoldi CA, McKay M, Davies B (2015) MAF2 is regulated by temperature-dependent splicing and represses flowering at low temperatures in parallel with FLM. PLoS ONE 10:e0126516. https://doi.org/10.1371/journal.pone.0126516 - DOI - PubMed - PMC
    1. Andrés F, Porri A, Torti S, Mateos J, Romera-Branchat M, García-Martínez JL, Fornara F, Gregis V, Kater MM, Coupland G (2014) SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc Natl Acad Sci U S A 111:E2760–E2769. https://doi.org/10.1073/pnas.1409567111 - DOI - PubMed - PMC
    1. Bechtold U, Penfold CA, Jenkins DJ, Legaie R, Moore JD, Lawson T, Matthews JSA, Vialet-Chabrand SRM, Baxter L, Subramaniam S, Hickman R, Florance H, Sambles C, Salmon DL, Feil R, Bowden L, Hill C, Baker NR, Lunn JE, Finkenstädt B, Mead A, Buchanan-Wollaston V, Beynon J, Rand DA, Wild DL, Denby KJ, Ott S, Smirnoff N, Mullineaux PM (2016) Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell 28:345–366. https://doi.org/10.1105/tpc.15.00910 - DOI - PubMed - PMC
    1. Brill EM, Watson JM (2004) Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Funct Plant Biol 31:217–224. https://doi.org/10.1071/FP03180 - DOI - PubMed
    1. Cho HJ, Kim JJ, Lee JH, Kim W, Jung JH, Park CM, Ahn JH (2012) SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis. FEBS Lett 586:2332–2337. https://doi.org/10.1016/j.febslet.2012.05.035 - DOI - PubMed

MeSH terms

LinkOut - more resources