Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec 31;13(1):162.
doi: 10.3390/ani13010162.

Microplastic Interactions and Possible Combined Biological Effects in Antarctic Marine Ecosystems

Affiliations
Review

Microplastic Interactions and Possible Combined Biological Effects in Antarctic Marine Ecosystems

Roberto Bargagli et al. Animals (Basel). .

Abstract

Antarctica and the Southern Ocean are the most remote regions on Earth, and their quite pristine environmental conditions are increasingly threatened by local scientific, tourism and fishing activities and long-range transport of persistent anthropogenic contaminants from lower latitudes. Plastic debris has become one of the most pervasive and ubiquitous synthetic wastes in the global environment, and even at some coastal Antarctic sites it is the most common and enduring evidence of past and recent human activities. Despite the growing scientific interest in the occurrence of microplastics (MPs) in the Antarctic environment, the lack of standardized methodologies for the collection, analysis and assessment of sample contamination in the field and in the lab does not allow us to establish their bioavailability and potential impact. Overall, most of the Southern Ocean appears to be little-affected by plastic contamination, with the exception of some coastal marine ecosystems impacted by wastewater from scientific stations and tourist vessels or by local fishing activities. Microplastics have been detected in sediments, benthic organisms, Antarctic krill and fish, but there is no clear evidence of their transfer to seabirds and marine mammals. Therefore, we suggest directing future research towards standardization of methodologies, focusing attention on nanoplastics (which probably represent the greatest biological risks) and considering the interactions of MPs with macro- and microalgae (especially sea-ice algae) and the formation of epiplastic communities. In coastal ecosystems directly impacted by human activities, the combined exposure to paint chips, metals, persistent organic pollutants (POPs), contaminants of emerging interest (CEI) and pathogenic microorganisms represents a potential danger for marine organisms. Moreover, the Southern Ocean is very sensitive to water acidification and has shown a remarkable decrease in sea-ice formation in recent years. These climate-related stresses could reduce the resilience of Antarctic marine organisms, increasing the impact of anthropogenic contaminants and pathogenic microorganisms.

Keywords: Antarctic marine biota; anthropogenic contaminants; climate change; cumulative stress; fish; krill; microplastics; penguins; polar skua; seals; zoobenthos.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Sladen W.J., Menzie C.M., Reichel W.L. DDT residues in Adélie penguins and a crabeater seal from Antarctica. Nature. 1966;210:670–673. doi: 10.1038/210670a0. - DOI - PubMed
    1. Molina M., Rowland F. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature. 1974;249:810–812. doi: 10.1038/249810a0. - DOI
    1. Farman J.C., Gardiner B.G., Shanklin J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature. 1985;315:207–210. doi: 10.1038/315207a0. - DOI
    1. Bargagli R. Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact. Springer; Berlin/Heidelberg, Germany: 2005.
    1. Bargagli R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 2008;400:212–226. doi: 10.1016/j.scitotenv.2008.06.062. - DOI - PubMed

LinkOut - more resources