Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Dec 21;24(1):59.
doi: 10.3390/ijms24010059.

Intra-Articular Mesenchymal Stem Cell Injection for Knee Osteoarthritis: Mechanisms and Clinical Evidence

Affiliations
Review

Intra-Articular Mesenchymal Stem Cell Injection for Knee Osteoarthritis: Mechanisms and Clinical Evidence

Pengxu Wei et al. Int J Mol Sci. .

Abstract

Knee osteoarthritis presents higher incidences than other joints, with increased prevalence during aging. It is a progressive process and may eventually lead to disability. Mesenchymal stem cells (MSCs) are expected to repair damaged issues due to trilineage potential, trophic effects, and immunomodulatory properties of MSCs. Intra-articular MSC injection was reported to treat knee osteoarthritis in many studies. This review focuses on several issues of intra-articular MSC injection for knee osteoarthritis, including doses of MSCs applied for injection and the possibility of cartilage regeneration following MSC injection. Intra-articular MSC injection induced hyaline-like cartilage regeneration, which could be seen by arthroscopy in several studies. Additionally, anatomical, biomechanical, and biochemical changes during aging and other causes participate in the development of knee osteoarthritis. Conversely, appropriate intervention based on these anatomical, biomechanical, biochemical, and functional properties and their interactions may postpone the progress of knee OA and facilitate cartilage repair induced by MSC injection. Hence, post-injection rehabilitation programs and related mechanisms are discussed.

Keywords: cartilage regeneration; cartilage repair; dose; human; hyaline cartilage; intra-articular injection; knee osteoarthritis; mesenchymal stem cells.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Schematic demonstration of different layers of articular (hyaline) cartilage and subchondral bone of human knee joint. Arrows indicate the outermost layer of articular (hyaline) cartilage, that is, the lamina splendens. In some literature, the lamina splendens is also referred to as “the surface zone.” The superficial zone contains thin collagen fibrils and the middle zone contains thin and thick collagen fibrils; the deep zone contains thick collagen fibrils and is, therefore, the most stress-resistant. (A). Traditional concepts suggest that the superficial/gliding zone contains collagen fibrils parallel to the surface of healthy hyaline cartilage (whereas the lamina splendens does not contain collagen fibrils and chondrocytes); (B). Current findings indicate that the superficial/gliding zone contains collagen fibrils oblique to the surface of healthy hyaline cartilage (and the lamina splendens contain interwoven collagen bundles, which are not shown in this figure). Notably, interwoven collagen bundles within the lamina splendens rarely integrate obliquely oriented collagen fibrils in the superficial zone, which implies no tight connection between the two layers. Such a feature provides limited resistance to tearing/peeling off this surface layer from underlying cartilage tissues during exercise/sports accidents.

References

    1. Oliveria S.A., Felson D.T., Reed J.I., Cirillo P.A., Walker A.M. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995;38:1134–1141. doi: 10.1002/art.1780380817. - DOI - PubMed
    1. Doyle E.C., Wragg N.M., Wilson S.L. Intraarticular injection of bone marrow-derived mesenchymal stem cells enhances regeneration in knee osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2020;28:3827–3842. doi: 10.1007/s00167-020-05859-z. - DOI - PMC - PubMed
    1. Silverwood V., Blagojevic-Bucknall M., Jinks C., Jordan J., Protheroe J., Jordan K. Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthr. Cartil. 2015;23:507–515. doi: 10.1016/j.joca.2014.11.019. - DOI - PubMed
    1. Kellgren J.H., Lawrence J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957;16:494–502. doi: 10.1136/ard.16.4.494. - DOI - PMC - PubMed
    1. Loeser R.F., Goldring S.R., Scanzello C.R., Goldring M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012;64:1697–1707. doi: 10.1002/art.34453. - DOI - PMC - PubMed

LinkOut - more resources