Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb;107(4):1143-1157.
doi: 10.1007/s00253-023-12362-1. Epub 2023 Jan 10.

Identification of traits to improve co-assimilation of glucose and xylose by adaptive evolution of Spathaspora passalidarum and Scheffersomyces stipitis yeasts

Affiliations

Identification of traits to improve co-assimilation of glucose and xylose by adaptive evolution of Spathaspora passalidarum and Scheffersomyces stipitis yeasts

Débora Trichez et al. Appl Microbiol Biotechnol. 2023 Feb.

Abstract

Lignocellulosic biomass is a renewable raw material for producing several high-value-added chemicals and fuels. In general, xylose and glucose are the major sugars in biomass hydrolysates, and their efficient utilization by microorganisms is critical for an economical production process. Yeasts capable of co-consuming mixed sugars might lead to higher yields and productivities in industrial fermentation processes. Herein, we performed adaptive evolution assays with two xylose-fermenting yeasts, Spathaspora passalidarum and Scheffersomyces stipitis, to obtain derived clones with improved capabilities of glucose and xylose co-consumption. Adapted strains were obtained after successive growth selection using xylose and the non-metabolized glucose analog 2-deoxy-D-glucose as a selective pressure. The co-fermentation capacity of evolved and parental strains was evaluated on xylose-glucose mixtures. Our results revealed an improved co-assimilation capability by the evolved strains; however, xylose and glucose consumption were observed at slower rates than the parental yeasts. Genome resequencing of the evolved strains revealed genes affected by non-synonymous variants that might be involved with the co-consumption phenotype, including the HXT2.4 gene that encodes a putative glucose transporter in Sp. passalidarum. Expression of this mutant HXT2.4 in Saccharomyces cerevisiae improved the cells' co-assimilation of glucose and xylose. Therefore, our results demonstrated the successful improvement of co-fermentation through evolutionary engineering and the identification of potential targets for further genetic engineering of different yeast strains. KEY POINTS: • Laboratory evolution assay was used to obtain improved sugar co-consumption of non-Saccharomyces strains. • Evolved Sp. passalidarum and Sc. stipitis were able to more efficiently co-ferment glucose and xylose. • A mutant Hxt2.4 permease, which co-transports xylose and glucose, was identified.

Keywords: Adaptive evolution engineering; Co-fermentation; Glucose repression; Scheffersomyces stipitis; Spathaspora passalidarum; Sugar transporter.

PubMed Disclaimer

References

    1. Alkim C, Trichez D, Cam Y, Spina L, François JM, Walther T (2016) The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures. Biotechnol Biofuels 9:201. https://doi.org/10.1186/s13068-016-0610-2 - DOI
    1. Almeida JRM, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299. https://doi.org/10.1002/biot.201000301 - DOI
    1. Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinforma 43:483–492. https://doi.org/10.1002/0471250953.bi1110s43 - DOI
    1. Braga M, Ferreira PM, Almeida JRM (2021) Screening method to prioritize relevant bio-based acids and their biochemical processes using recent patent information. Biofuels Bioprod Biorefining 15:231–249. https://doi.org/10.1002/bbb.2156 - DOI
    1. Cadete RM, de las Heras AM, Sandström AG, Ferreira C, Gírio F, Gorwa-Grauslund M-F, Rosa CA, Fonseca C (2016) Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 9:167. https://doi.org/10.1186/s13068-016-0570-6

Supplementary concepts

LinkOut - more resources