Database-based machine learning in sepsis deserves attention. Author's reply
- PMID: 36627491
- DOI: 10.1007/s00134-022-06972-y
Database-based machine learning in sepsis deserves attention. Author's reply
Comment on
-
Database-based machine learning in sepsis deserves attention.Intensive Care Med. 2023 Feb;49(2):262-263. doi: 10.1007/s00134-022-06961-1. Epub 2023 Jan 2. Intensive Care Med. 2023. PMID: 36592206 No abstract available.
References
-
- Hu W, Yang M, Chen H (2022) Database-based machine learning in sepsis deserves attention. Intensive Care Med. https://doi.org/10.1007/s00134-022-06961-1 - DOI
-
- Kalimouttou A, Lerner I, Cheurfa C et al (2022) Machine-learning-derived sepsis bundle of care. Intensive Care Med. https://doi.org/10.1007/s00134-022-06928-2 - DOI - PubMed
-
- Singer M, Deutschman CS, Seymour CW, Shankar-Hari M et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. https://doi.org/10.1001/jama.2016.0287 - DOI - PubMed - PMC
-
- Ferrer R, Martin-Loeches I, Phillips G et al (2014) Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. https://doi.org/10.1097/CCM.0000000000000330 - DOI - PubMed
-
- Bisarya R, Song X, Salle J et al (2022) Antibiotic timing and progression to septic shock among patients in the ED With suspected infection. Chest. https://doi.org/10.1016/j.chest.2021.06.029 - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Medical