Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 25:1239:340751.
doi: 10.1016/j.aca.2022.340751. Epub 2022 Dec 27.

A novel ADA-coated UCNPs@NB sensing platform combined with nucleic acid amplification for rapid detection of Escherichia coli

Affiliations

A novel ADA-coated UCNPs@NB sensing platform combined with nucleic acid amplification for rapid detection of Escherichia coli

Yaqi Song et al. Anal Chim Acta. .

Abstract

In this study, we reported a novel sensing platform based on fluorescence quenching composed of alendronic acid (ADA) coated upconversion nanoparticles (UCNPs) and Nile Blue (NB) combined with polymerase chain reaction (PCR) for rapid, sensitive, and specific detection of Escherichia coli (E. coli). As a fluorescence acceptor, NB has a broad absorption band and can quench upconversion fluorescence intensity at 544 nm and 658 nm based on IFE. PCR is a double-stranded DNA (dsDNA) amplification technique with high specificity. The NB-dsDNA complex can be formed by intercalation of NB between base pairs and groove of dsDNA, leading to upconversion fluorescence recovery. The ADA-coated UCNPs@NB sensing platform achieved to detect E. coli in 1.5 h, with a lower limit of detection (33 CFU mL-1). In addition, the sensitivity of the ADA@UCNPs-NB fluorescence sensor under different PCR cycle numbers was discussed. The results showed that the proposed sensor could effectively shorten the assay time (1.0 h) while maintaining excellent sensitivity. This study demonstrated a rapid and sensitive analytical method for detecting E. coli in chicken, providing a reference for constructing PCR fluorescence sensors.

Keywords: Escherichia coli; Fluorescence quenching; Intercalation; Nile blue; Polymerase chain reaction; Upconversion nanoparticles.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources