Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 25;15(3):4385-4397.
doi: 10.1021/acsami.2c15367. Epub 2023 Jan 11.

Thermo-Responsive Poly(N-isopropylacrylamide)/Hydroxypropylmethyl Cellulose Hydrogel with High Luminous Transmittance and Solar Modulation for Smart Windows

Affiliations

Thermo-Responsive Poly(N-isopropylacrylamide)/Hydroxypropylmethyl Cellulose Hydrogel with High Luminous Transmittance and Solar Modulation for Smart Windows

Kai Wang et al. ACS Appl Mater Interfaces. .

Abstract

Thermochromic smart windows are considered to be promising energy-saving devices for reducing energy consumption in buildings. The ideal materials for thermochromic smart windows should have high transmittance, high solar modulation, low phase-transition temperature, and excellent high-temperature thermal stability, which are difficult to achieve simultaneously. This work reports a simple one-step low-temperature polymerization method to prepare a thermo-responsive poly(N-isopropylacrylamide)/hydroxypropylmethyl cellulose (PNIPAM/HPMC) hydrogel achieving the above performances simultaneously. The low-temperature polymerization environment endowed the hydrogel with a high luminous transmittance (Tlum) of 90.82%. HPMC as a functional material effectively enhanced the mechanical properties and thermal stability of the hydrogel. Meanwhile, the PNIPAM/HPMC hydrogel showed a low phase-transition temperature (∼32 °C) and high solar modulation (ΔTsol = 81.52%), which proved that it is an ideal material for thermochromic smart windows. Moreover, a PNIPAM/HPMC smart window exhibited high light transmittance (T380-760 = 86.27%), excellent light modulation (ΔT365 = 74.27%, ΔT380-760 = 86.17%, and ΔT940 = 63.93%), good indoor temperature regulation ability and stability, which indicated that it was an attractive candidate for application in reducing energy consumption in buildings. This work also provides an option and direction for modifying PNIPAM-based thermochromic smart windows.

Keywords: energy-saving; hydrogel; poly(N-isopropylacrylamide); smart window; solar modulation; thermochromism.

PubMed Disclaimer

LinkOut - more resources