Complex plant quality-microbiota-population interactions modulate the response of a specialist herbivore to the defence of its host plant
- PMID: 36632135
- PMCID: PMC9826300
- DOI: 10.1111/1365-2435.14177
Complex plant quality-microbiota-population interactions modulate the response of a specialist herbivore to the defence of its host plant
Abstract
Many specialist herbivores have evolved strategies to cope with plant defences, with gut microbiota potentially participating to such adaptations.In this study, we assessed whether the history of plant use (population origin) and microbiota may interact with plant defence adaptation.We tested whether microbiota enhance the performance of Melitaea cinxia larvae on their host plant, Plantago lanceolata and increase their ability to cope the defensive compounds, iridoid glycosides (IGs).The gut microbiota were significantly affected by both larval population origin and host plant IG level. Contrary to our prediction, impoverishing the microbiota with antibiotic treatment did not reduce larval performance.As expected for this specialized insect herbivore, sequestration of one of IGs was higher in larvae fed with plants producing higher concentration of IGs. These larvae also showed metabolic signature of intoxication (i.e. decrease in Lysine levels). However, intoxication on highly defended plants was only observed when larvae with a history of poorly defended plants were simultaneously treated with antibiotics.Our results suggest that both adaptation and microbiota contribute to the metabolic response of herbivores to plant defence though complex interactions. Read the free Plain Language Summary for this article on the Journal blog.
De nombreux herbivores spécialistes ont évolué vers des stratégies qui leurs permettent de contourner les défenses de leur plantes hôtes. Le microbiote pourrait potentiellement participer à certaines de ces adaptations.Dans cette étude, nous avons essayé de déterminer si l'adaptation d'un herbivore est influencée par son microbiote et l'historique d'utilisation de sa plante hôte (origine de la population).Nous avons testé en quoi le microbiote contribue à la performance de chenilles Melitaea cinxia sur leur plante hôte Plantago lanceolata ainsi que leur capacité à faire face aux glucosides d'iridoïdes (GI), des molécules de défenses produites par P. lanceolata.Comme attendu, la concentration de GI stockée était plus importante chez les chenilles qui étaient nourries avec des plantes produisant de fortes concentrations de GI. Ces chenilles présentaient par ailleurs des signes d'intoxications (i.e. diminution de la concentration de Lysine). Cependant cela n'était visible que lorsque les chenilles étaient issues de populations qui se nourrissaient historiquement sur des plantes peu défendues et lorsqu'elles étaient simultanément traitées par des antibiotiques.Nos résultats suggèrent donc que des processus complexes d'adaptation couplés à l'activité du microbiote contribuent à la réponse des herbivores aux défenses de leurs plante hôtes.
Keywords: Lepidoptera; herbivore; microbiota; plant defence; trophic interactions.
© 2022 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Conflict of interest statement
Arjen Biere is an Associate Editor of Functional Ecology, but took no part in the peer review and decision‐making processes for this paper.
Figures




Similar articles
-
Differential performance of a specialist and two generalist herbivores and their parasitoids on Plantago lanceolata.J Chem Ecol. 2011 Jul;37(7):765-78. doi: 10.1007/s10886-011-9983-7. Epub 2011 Jun 21. J Chem Ecol. 2011. PMID: 21691810 Free PMC article.
-
Host plant iridoid glycosides mediate herbivore interactions with natural enemies.Oecologia. 2018 Oct;188(2):491-500. doi: 10.1007/s00442-018-4224-1. Epub 2018 Jul 12. Oecologia. 2018. PMID: 30003369
-
Moderate plant water stress improves larval development, and impacts immunity and gut microbiota of a specialist herbivore.PLoS One. 2019 Feb 20;14(2):e0204292. doi: 10.1371/journal.pone.0204292. eCollection 2019. PLoS One. 2019. PMID: 30785875 Free PMC article.
-
Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities.Ann Bot. 2015 Jun;115(7):1015-51. doi: 10.1093/aob/mcv054. Ann Bot. 2015. PMID: 26019168 Free PMC article. Review.
-
Plant resistance towards insect herbivores: a dynamic interaction.New Phytol. 2002 Nov;156(2):145-169. doi: 10.1046/j.1469-8137.2002.00519.x. New Phytol. 2002. PMID: 33873279 Review.
Cited by
-
Cladosporium-Insect Relationships.J Fungi (Basel). 2024 Jan 19;10(1):78. doi: 10.3390/jof10010078. J Fungi (Basel). 2024. PMID: 38276024 Free PMC article. Review.
-
Suitability of red fox (Vulpes vulpes) and golden jackal (Canis aureus) as hosts of Echinococcus multilocularis based on egg production characteristics and literature data on the intestinal ecosystems of carnivores.Curr Res Parasitol Vector Borne Dis. 2024 Oct 28;6:100225. doi: 10.1016/j.crpvbd.2024.100225. eCollection 2024. Curr Res Parasitol Vector Borne Dis. 2024. PMID: 39554486 Free PMC article.
-
Bringing Fundamental Insights of Induced Resistance to Agricultural Management of Herbivore Pests.J Chem Ecol. 2023 Jun;49(5-6):218-229. doi: 10.1007/s10886-023-01432-3. Epub 2023 May 4. J Chem Ecol. 2023. PMID: 37138167 Free PMC article. Review.
-
Parasitoid Calyx Fluid and Venom Affect Bacterial Communities in Their Lepidopteran Host Labial Salivary Glands.Microb Ecol. 2025 Apr 23;88(1):33. doi: 10.1007/s00248-025-02535-y. Microb Ecol. 2025. PMID: 40266381 Free PMC article.
References
-
- Acevedo, F. E. , Peiffer, M. , Tan, C.‐W. , Stanley, B. A. , Stanley, A. , Wang, J. , Jones, A. G. , Hoover, K. , Rosa, C. , Luthe, D. , & Felton, G. (2017). Fall armyworm‐associated gut bacteria modulate plant defense responses. Molecular Plant‐Microbe Interactions: MPMI, 30(2), 127–137. 10.1094/MPMI-11-16-0240-R - DOI - PubMed
-
- Baden, C. U. , & Dobler, S. (2009). Potential benefits of iridoid glycoside sequestration in Longitarsus melanocephalus (Coleoptera, Chrysomelidae). Basic and Applied Ecology, 10(1), 27–33. 10.1016/j.baae.2007.12.003 - DOI
-
- Bates, D. , Maechler, M. , Bolker, B. , Walker, S. , Christensen, R. H. B. , Singmann, H. , Dai, B. , Grothendieck, G. , & Green, P. (2017). lme4: linear mixed‐effects models using “eigen” and S4 (1.1‐13). https://cran.r‐project.org/web/packages/lme4/index.html
-
- Belda, E. , Pedrola, L. , Peretó, J. , Martínez‐Blanch, J. F. , Montagud, A. , Navarro, E. , Urchueguía, J. , Ramón, D. , Moya, A. , & Porcar, M. (2011). Microbial diversity in the midguts of field and lab‐reared populations of the European corn borer Ostrinia nubilalis . PLoS One, 6(6), e21751. 10.1371/journal.pone.0021751 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources