Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 1;145(4):2638-2646.
doi: 10.1021/jacs.2c12674. Epub 2023 Jan 12.

Realization of Long Operational Lifetimes in Vacuum-Deposited Organic Light-Emitting Devices Based on para-Substituted Pyridine Carbazolylgold(III) C^C^N Complexes

Affiliations

Realization of Long Operational Lifetimes in Vacuum-Deposited Organic Light-Emitting Devices Based on para-Substituted Pyridine Carbazolylgold(III) C^C^N Complexes

Chun-Yin Wong et al. J Am Chem Soc. .

Abstract

A new series of robust C^C^N carbazolylgold(III) complexes is designed and synthesized through the introduction of inert and sterically bulky oligophenyl substituents on the pyridyl moiety of the cyclometalating ligand. High photoluminescence quantum yields of up to 96% are recorded with these complexes doped in solid-state thin films, and short excited-state lifetimes of 0.3 μs or less in the solid state at room temperature are found. Promising electroluminescence (EL) performances are shown by the vacuum-deposited organic light-emitting devices (OLEDs) based on this series of gold(III) complexes. High external quantum efficiencies of up to 19.5% with efficiency roll-offs of down to 10% at a practical luminance brightness level of 1000 cd m-2 are achieved. More importantly, record-long operational lifetimes (LT50) of up to 470,700 h at 100 cd m-2 are realized, which is currently the highest value among all classes of gold(III) complexes with tridentate pincer ligands. Particularly, by introducing a sterically bulky terphenyl moiety on the reactive site of the pyridine ring, the LT50 value is shown to attain ∼7 times longer half-lifetime than that based on the unsubstituted complex. These unprecedented EL performances and the simple synthetic route in a mercury-free fashion make them promising emitting materials for practical OLEDs toward commercialization.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources