Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Jan 12;27(1):13.
doi: 10.1186/s13054-022-04242-3.

"THE MANTLE" bundle for minimizing cerebral hypoxia in severe traumatic brain injury

Affiliations
Review

"THE MANTLE" bundle for minimizing cerebral hypoxia in severe traumatic brain injury

Daniel Agustin Godoy et al. Crit Care. .

Abstract

To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.

Keywords: Brain hypoxia; Brain oxygenation; Cerebral ischemia; Cerebral oxygenation monitoring; Traumatic brain injury.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
A Oxygen, O2 route. From atmospheric air or the gaseous mixture supplied by mechanical ventilation, O2 travels following concentration gradients. Cerebral O2 transport (CerO2t) depends on the product of CBF and arterial O2 content (CaO2), determined by the following equation: CaO2 = (Hgb × 1.34 x SaO2) + (PaO2 × 0.003), where: Hgb: concentration in gr/dl; 1.34: number of ml transported by each gram of Hgb; SaO2: arterial O2 saturation; PaO2: arterial pressure of O2. The affinity of oxygen for Hgb is expressed by analyzing the Hgb-oxygen saturation curve. The CBF is mainly determined by the cerebral perfusion pressure (CPP) and the radius of the cerebral resistance vessels (autoregulation curve). O2 diffusion at cellular level. If the physiological variables interact harmoniously, oxygen reaches the microcirculation at 98 mmHg, then diffuses into the cell through the interstitial space (PO2i = 20–40 mmHg). Inside the cell, the O2 pressure is 1.5 mmHg. The distance that the 02 must travel varies between 20 and 60 microns
Fig. 2
Fig. 2
The MANTLE mnemonics. Jugular venous saturation of oxygen, SvjO2; brain tissue oxygen pressure, PTiO2; cerebral perfusion pressure, CPP; systolic arterial blood pressure, SABP; tidal volume, Vt; respiratory rate, RR; Plateau pressure, PP; driving pressure, DP; mechanical power, MP; intracranial pressure, ICP; oxygen pressure at half arterial oxygen pressure, p50; optic nerve sheath diameter, ONSD; pulsatility index, PI; Computed Tomography, CT

Similar articles

Cited by

References

    1. Zauner A, Daugherty WP, Bullock MR, et al. Brain oxygenation and energy metabolism: part I-biological function and pathophysiology. Neurosurgery. 2002;51:289–301. - PubMed
    1. Marín-Caballos AJ, Murillo-Cabezas F, Domínguez-Roldan JM, Leal-Noval SR, Rincón-Ferrari MD, Muñoz-Sánchez MÁ. Monitorización de la presión tisular de oxígeno (PtiO2) en la hipoxia cerebral: aproximación diagnóstica y terapéutica. Med Intensiva. 2008;32(2):81–90. doi: 10.1016/S0210-5691(08)70912-4. - DOI - PubMed
    1. Oddo M, Levine JM, Mackenzie L, Frangos S, Feihl F, Kasner SE, Katsnelson M, Pukenas B, Macmurtrie E, Maloney-Wilensky E, Kofke WA, LeRoux PD. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;69(5):1037–45. doi: 10.1227/NEU.0b013e3182287ca7. - DOI - PubMed
    1. Siggarard-Andersen O, Gothgen IH, Fogh-Andersen N, Larsen LH. Oxygen status of arterial and mixed venous blood. Crit Care Med. 1995;23:1284–1293. doi: 10.1097/00003246-199507000-00020. - DOI - PubMed
    1. Godoy DA, Badenes R, Murillo-Cabezas F. Ten physiological commandments for severe head injury. Rev Esp Anestesiol Reanim (Engl Ed) 2021;68(5):280–292. doi: 10.1016/j.redar.2020.09.005. - DOI - PubMed

MeSH terms