Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Sep;27(3):211-24.
doi: 10.1016/0301-4622(87)80060-1.

Dynamic light-scattering study of muscle F-actin. II

Affiliations

Dynamic light-scattering study of muscle F-actin. II

S Fujime et al. Biophys Chem. 1987 Sep.

Abstract

By dynamic light scattering, the intensity autocorrelation function, G2(tau) = B[1 + beta[g1(tau)[2], was obtained over the scattering angles (theta) from 30 to 130 degrees in steps of 10 degrees for semidilute solutions of muscle F-actin and of F-actin complexed with heavy meromyosin in the absence of ATP (acto-HMM), where B is the baseline and beta a constant. The main findings were: (1) A 0.5 mg/ml F-actin solution gave nonreproducible spectra at theta less than or equal to 40 degrees but quite reproducible spectra at theta greater than or equal to 50 degrees, with beta = 0.9-0.8 at all theta values. Nonreproducibility of spectra at low theta values was concluded to be due to restricted motions of very long filaments confined in cages or zig-zag tubing formed by a major fraction of filaments, where the very long filaments were those at a distant tail of an exponential length distribution and the major fraction of filaments were those with lengths around Ln-2Ln, Ln being the number-average length. Spectral widths were compared with theoretical ones for rigid rods averaged over the length distribution with Ln = 900 nm, and were suggested to be largely contributed at high theta values from bending motions of filaments. (2) Acto-HMM solutions at 0.5 mg/ml F-actin and at weight ratios of HMM to F-actin of 0.5-2 gave spectra which, with respect to theta, behaved very similarly to those of F-actin alone. The spectral widths, however, drastically decreased with the weight ratio up to unity and stayed virtually constant above unity. In contrast to a previous study (F.D. Carlson and A.B. Fraser, J. Mol. Biol. 89 (1974) 273), beta values of acto-HMM were as large as those of F-actin alone. Acto-HMM was concluded to travel a distance far greater than 1/K with a mobility smaller than that of F-actin, where K = (4 pi/lambda) sin(theta/2), lambda being the wavelength of light in the medium. These results suggest that acto-HMM gels are very soft even though they did not pour from an inverted cell. Based on several intuitive models which give a mutual relationship between the beta value and modes of motion of scatterers, we discuss the restricted motions responsible for nonreproducibility of spectra at low angles and large beta values of acto-HMM gels at all theta values and weight ratios so far studied.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources