Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1987 Nov;70(5):1443-9.

Membrane-associated sickle hemoglobin: a major determinant of sickle erythrocyte rigidity

Affiliations
  • PMID: 3663941
Free article
Comparative Study

Membrane-associated sickle hemoglobin: a major determinant of sickle erythrocyte rigidity

E A Evans et al. Blood. 1987 Nov.
Free article

Abstract

Micropipette aspiration tests on single erythrocytes have previously shown that the static rigidity (membrane shear modulus) of oxygenated sickle cells increased with increasing hemoglobin concentration, whereas the rigidity of normal cells was independent of hemoglobin concentration. Moreover, it was observed that after mechanical extension, sickle cells exhibited persistent deformation more frequently and to a greater extent than normal cells. To ascertain if differences in association of normal and sickle hemoglobin with the membrane could account for these observations, we measured rheologic properties of normal membranes reconstituted with sickle hemoglobin and sickle membranes reconstituted with normal hemoglobin. The static rigidity of normal ghosts reloaded with sickle hemoglobin was higher than those of either normal ghosts reloaded with normal hemoglobin or native normal cells. On the other hand, the increased rigidity of native sickle cells decreased to near-normal values following reconstitution with normal hemoglobin. Furthermore, we observed that normal ghosts reconstituted with sickle hemoglobin exhibited persistent bumps after mechanical extension, but no bumps formed on normal ghosts reconstituted with normal hemoglobin. Moreover residual bumps were not produced on sickle cells reloaded with normal hemoglobin. Since mechanical characteristics peculiar to sickle cells could be induced in normal cells by incorporation of sickle hemoglobin, and since normal characteristics could be restored to sickle cells by incorporation of normal hemoglobin, we suggest that the interaction of sickle hemoglobin with the cell membrane is responsible for augmented static rigidity of oxygenated sickle erythrocytes.

PubMed Disclaimer

Publication types

LinkOut - more resources