Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 13;22(1):10.
doi: 10.1186/s12933-023-01737-3.

Independent effects of the triglyceride-glucose index on all-cause mortality in critically ill patients with coronary heart disease: analysis of the MIMIC-III database

Affiliations

Independent effects of the triglyceride-glucose index on all-cause mortality in critically ill patients with coronary heart disease: analysis of the MIMIC-III database

Rongting Zhang et al. Cardiovasc Diabetol. .

Abstract

Background: The triglyceride-glucose (TyG) index is a reliable alternative biomarker of insulin resistance (IR). However, whether the TyG index has prognostic value in critically ill patients with coronary heart disease (CHD) remains unclear.

Methods: Participants from the Medical Information Mart for Intensive Care III (MIMIC-III) were grouped into quartiles according to the TyG index. The primary outcome was in-hospital all-cause mortality. Cox proportional hazards models were constructed to examine the association between TyG index and all-cause mortality in critically ill patients with CHD. A restricted cubic splines model was used to examine the associations between the TyG index and outcomes.

Results: A total of 1,618 patients (65.14% men) were included. The hospital mortality and intensive care unit (ICU) mortality rate were 9.64% and 7.60%, respectively. Multivariable Cox proportional hazards analyses indicated that the TyG index was independently associated with an elevated risk of hospital mortality (HR, 1.71 [95% CI 1.25-2.33] P = 0.001) and ICU mortality (HR, 1.50 [95% CI 1.07-2.10] P = 0.019). The restricted cubic splines regression model revealed that the risk of hospital mortality and ICU mortality increased linearly with increasing TyG index (P for non-linearity = 0.467 and P for non-linearity = 0.764).

Conclusions: The TyG index was a strong independent predictor of greater mortality in critically ill patients with CHD. Larger prospective studies are required to confirm these findings.

Keywords: All-cause mortality; Coronary heart disease; Insulin resistance; MIMIC-III database; Triglyceride-glucose index.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow of participants through the trial
Fig. 2
Fig. 2
Kaplan–Meier survival analysis curves for all-cause mortality. Footnote TyG index quartiles: Q1 (6.23–8.65), Q2 (8.65–9.10), Q3 (9.10–9.58), Q4 (9.58–11.78). Kaplan–Meier curves showing cumulative probability of all-cause mortality according to groups at 1 month (a), and 3 months (b)
Fig. 3
Fig. 3
Hazard ratios (95% CIs) for hospital mortality according to TyG index quartiles after adjusting for age, sex, BMI, dyslipidemia, hypertension, diabetes, chronic kidney disease, respiratory failure, white blood cell, red blood cell, hemoglobin, serum creatinine, SIRS score. Error bars indicate 95% CIs. The first quartile is the reference. CIs, confidence intervals; TyG, triglyceride-glucose
Fig. 4
Fig. 4
Restricted cubic spline curve for the TyG index hazard ratio. a Restricted cubic spline for hospital mortality. b Restricted cubic spline for ICU mortality. HR, hazard ratio; CI, confidence interval; ICU, intensive care unit; TyG, triglyceride-glucose
Fig. 5
Fig. 5
Forest plots of hazard ratios for the primary endpoint in different subgroups. HR, hazard ratio; CI, confidence interval; BMI, body mass index; CKD, chronic kidney disease; AMI, acute myocardial infarction

References

    1. Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018;15(4):215–229. doi: 10.1038/nrcardio.2017.189. - DOI - PubMed
    1. Khozeimeh F, Sharifrazi D, Izadi NH, Joloudari JH, Shoeibi A, Alizadehsani R, et al. RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance. Sci Rep. 2022;12(1):11178. doi: 10.1038/s41598-022-15374-5. - DOI - PMC - PubMed
    1. Beauvais F, Tartière L, Pezel T, Motet C, Aumont MC, Baudry G, et al. First symptoms and health care pathways in hospitalized patients with acute heart failure: ICPS2 survey a report from the heart failure working group (GICC) of the french society of cardiology. Clin Cardiol. 2021 doi: 10.1002/clc.23666. - DOI - PMC - PubMed
    1. Zhang Y, Ding X, Hua B, Liu Q, Gao H, Chen H, et al. High triglyceride-glucose index is associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Nutr Metab Cardiovasc Dis. 2020;30(12):2351–2362. doi: 10.1016/j.numecd.2020.07.041. - DOI - PubMed
    1. Su J, Li Z, Huang M, Wang Y, Yang T, Ma M, et al. Triglyceride glucose index for the detection of the severity of coronary artery disease in different glucose metabolic states in patients with coronary heart disease: a RCSCD-TCM study in China. Cardiovasc Diabetol. 2022;21(1):96. doi: 10.1186/s12933-022-01523-7. - DOI - PMC - PubMed

Publication types

LinkOut - more resources