Bio-mineralized tin/bismuth oxide nanoparticles with silk fibroins for efficient electrochemical detection of 2-nitroaniline in river water samples
- PMID: 36640938
- DOI: 10.1016/j.envres.2023.115285
Bio-mineralized tin/bismuth oxide nanoparticles with silk fibroins for efficient electrochemical detection of 2-nitroaniline in river water samples
Abstract
In recent years, the usage of nitroaniline has played a vital role in pharmaceutical formulations as it is a crucial ingredient in the synthesis of pesticides and dyes. However, the level of nitroaniline existing in industrial waste keeps rising the environmental contamination. Thus, monitoring of active nitro-residuals becomes more significant in reducing the toxicity of the ecosystem. Therefore, we have taken an attempt to evaluate the hazardous pollutant 2-nitroaniline (2-NA) using the electrocatalyst viz., tin-doped bismuth oxide inserted on a biopolymer silk fibroin composite modified glassy carbon electrode (Sn-Bi2O3/SF@GCE). The Sn-Bi2O3/SF nanocomposite was synthesized through hydrothermal and co-precipitation methods. The physicochemical properties of the prepared Sn-Bi2O3/SF hybrid composite were examined by conventional microscopy and spectroscopic techniques like FE-SEM, HR-TEM, XRD, FTIR, Raman, and XPS. Furthermore, the bio-mineralized Sn-Bi2O3/SF@GCE displayed a wide linear range (0.009 μM-785.7 μM) and a lower detection limit (3.5 nM) with good sensitivity for 2-NA detection under the optimum conditions. The result shows that the Sn-Bi2O3/SF-modified GCE has good reproducibility, repeatability, and excellent selectivity for 2-NA detection in the presence of other co-interfering compounds. Moreover, the practical applicability of Sn-Bi2O3/SF@GCE sensors was investigated for the effective detection of 2-NA in real river water samples, revealing good recovery results.
Keywords: 2-nitroaniline; Bi(2)O(3); Binary metal oxides; Electrochemical sensor; Environmental pollutant; Silk fibroin.
Copyright © 2023 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources