Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 2;15(5):2354-2368.
doi: 10.1039/d2nr05267a.

Unraveling the impact of nano-scaling on silicon field-effect transistors for the detection of single-molecules

Affiliations

Unraveling the impact of nano-scaling on silicon field-effect transistors for the detection of single-molecules

Sybren Santermans et al. Nanoscale. .

Abstract

Electrolyte-gated silicon field-effect transistors (FETs) capable of detecting single molecules could enable high-throughput molecular sensing chips to advance, for example, genomics or proteomics. For solid-gated silicon FETs it is well-known that nano-scaled devices become sensitive to single elementary charges near the silicon-oxide interface. However, in electrolyte-gated FETs, electrolyte screening strongly reduces sensitivity to charges near the gate oxide. The question arises whether nano-scaling electrolyte-gated FETs can entail a sufficiently large signal-to-noise ratio (SNR) for the detection of single molecules. We enhanced a technology computer-aided design tool with electrolyte screening models to calculate the impact of the FET geometry on the single-molecule signal and FET noise. Our continuum FET model shows that a sufficiently large single-molecule SNR is only obtained when nano-scaling all FET channel dimensions. Moreover, we show that the expected scaling trend of the single-molecule SNR breaks down and no longer results in improvements for geometries approaching the decananometer size. This is the characteristic size of the FET channel region modulated by a typical molecule. For gate lengths below 50 nm, the overlap of the modulated region with the highly conductive junctions leads to saturation of the SNR. For cross-sections below 10-30 nm, SNR degrades due to the overlap of the modulated region with the convex FET corners where a larger local gate capacitance reduces charge sensitivity. In our study, assuming a commercial solid-state FET noise amplitude, we find that a suspended nanowire FET architecture with 35 nm length and 5 × 10 nm2 cross-section results in the highest SNR of about 10 for a 15-base DNA oligo in a 15 mM electrolyte. In contrast with typical silicon nanowire FET sensors which possess micron-scale gate lengths, we find it to be key that all channel dimensions are scaled down to the decananometer range.

PubMed Disclaimer

LinkOut - more resources