Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2023 Jan 16;1(1):CD015016.
doi: 10.1002/14651858.CD015016.pub2.

Systemic opioid regimens for postoperative pain in neonates

Affiliations
Meta-Analysis

Systemic opioid regimens for postoperative pain in neonates

Mari Kinoshita et al. Cochrane Database Syst Rev. .

Update in

  • Systemic opioid regimens for postoperative pain in neonates.
    Kinoshita M, Borges do Nascimento IJ, Styrmisdóttir L, Bruschettini M. Kinoshita M, et al. Cochrane Database Syst Rev. 2023 Apr 5;4(4):CD015016. doi: 10.1002/14651858.CD015016.pub3. Cochrane Database Syst Rev. 2023. PMID: 37018131 Free PMC article. Review.

Abstract

Background: Postoperative pain clinical management in neonates has always been a challenging medical issue. Worldwide, several systemic opioid regimens are available for pediatricians, neonatologists, and general practitioners to control pain in neonates undergoing surgical procedures. However, the most effective and safe regimen is still unknown in the current body of literature.

Objectives: To determine the effects of different regimens of systemic opioid analgesics in neonates submitted to surgery on all-cause mortality, pain, and significant neurodevelopmental disability. Potentially assessed regimens might include: different doses of the same opioid, different routes of administration of the same opioid, continuous infusion versus bolus administration, or 'as needed' administration versus 'as scheduled' administration.

Search methods: Searches were conducted in June 2022 using the following databases: Cochrane Central Register of Controlled Trials [CENTRAL], PubMed, and CINAHL. Trial registration records were identified via CENTRAL and an independent search of the ISRCTN registry.

Selection criteria: We included randomized controlled trials (RCTs), quasi-randomized, cluster-randomized, and cross-over controlled trials evaluating systemic opioid regimens' effects on postoperative pain in neonates (pre-term or full-term). We considered suitable for inclusion: I) studies evaluating different doses of the same opioid; 2) studies evaluating different routes of administration of the same opioid; 3) studies evaluating the effectiveness of continuous infusion versus bolus infusion; and 4) studies establishing an assessment of an 'as needed' administration versus 'as scheduled' administration.

Data collection and analysis: According to Cochrane methods, two investigators independently screened retrieved records, extracted data, and appraised the risk of bias. We stratified meta-analysis by the type of intervention: studies evaluating the use of opioids for postoperative pain in neonates through continuous infusion versus bolus infusion and studies assessing the 'as needed' administration versus 'as scheduled' administration. We used the fixed-effect model with risk ratio (RR) for dichotomous data and mean difference (MD), standardized mean difference (SMD), median, and interquartile range (IQR) for continuous data. Finally, we used the GRADEpro approach for primary outcomes to evaluate the quality of the evidence across included studies.

Main results: In this review, we included seven randomized controlled clinical trials (504 infants) from 1996 to 2020. We identified no studies comparing different doses of the same opioid, or different routes. The administration of continuous opioid infusion versus bolus administration of opioids was evaluated in six studies, while one study compared 'as needed' versus 'as scheduled' administration of morphine given by parents or nurses. Overall, the effectiveness of continuous infusion of opioids over bolus infusion as measured by the visual analog scale (MD 0.00, 95% confidence interval (CI) -0.23 to 0.23; 133 participants, 2 studies; I² = 0); or using the COMFORT scale (MD -0.07, 95% CI -0.89 to 0.75; 133 participants, 2 studies; I² = 0), remains unclear due to study designs' limitations, such as the unclear risk of attrition, reporting bias, and imprecision among reported results (very low certainty of the evidence). None of the included studies reported data on other clinically important outcomes such as all-cause mortality rate during hospitalization, major neurodevelopmental disability, the incidence of severe retinopathy of prematurity or intraventricular hemorrhage, and cognitive- and educational-related outcomes. AUTHORS' CONCLUSIONS: Limited evidence is available on continuous infusion compared to intermittent boluses of systemic opioids. We are uncertain whether continuous opioid infusion reduces pain compared with intermittent opioid boluses; none of the studies reported the other primary outcomes of this review, i.e. all-cause mortality during initial hospitalization, significant neurodevelopmental disability, or cognitive and educational outcomes among children older than five years old. Only one small study reported on morphine infusion with parent- or nurse-controlled analgesia.

PubMed Disclaimer

Conflict of interest statement

MK has no interests to declare.

LS has no interests to declare.

IJBN has no interests to declare.

MB is an Associate Editor for the Cochrane Neonatal Group. However, his participation in the editorial group has not impacted this review.

Figures

1
1
Screen4Me Summary Diagram
2
2
Prisma flow chart
3
3
Risk of bias summary
4
4
Risk of bias graph
5
5
Forest plot for number of infants with mechanical ventilation longer than 24 hours
1.1
1.1. Analysis
Comparison 1: Continuous infusion versus bolus administration, Outcome 1: Pain assessed with visual analogue scale (VAS) during the administration of selected drugs (neonates from 0 to 4 weeks)
1.2
1.2. Analysis
Comparison 1: Continuous infusion versus bolus administration, Outcome 2: Pain assessed with COMFORT scale during the administration of selected drugs (neonates from 0 to 4 weeks)
1.3
1.3. Analysis
Comparison 1: Continuous infusion versus bolus administration, Outcome 3: Hypotension requiring medical therapy
1.4
1.4. Analysis
Comparison 1: Continuous infusion versus bolus administration, Outcome 4: Mechanical ventilation longer than 24 hours

References

References to studies included in this review

Bouwmeester 2001 {published data only}
    1. Bouwmeester NJ, Anand KJ, Van Dijk M, Hop WC, Boomsma F, Tibboel D. Hormonal and metabolic stress responses after major surgery in children aged 0-3 years: a double-blind, randomized trial comparing the effects of continuous versus intermittent morphine. British Journal of Anaesthesia 2001;87(3):390-9. [DOI: 10.1093/bja/87.3.390] - DOI - PubMed
Bouwmeester 2003a {published data only}
    1. Bouwmeester NJ, Van den Anker JN, Hop WC, Anand KJ, Tibboel D. Age- and therapy-related effects on morphine requirements and plasma concentrations of morphine and its metabolites in postoperative infants. British Journal of Anaesthesia 2003;90(5):642-52. [DOI: 10.1093/bja/aeg121] - DOI - PubMed
Bouwmeester 2003b {published data only}
    1. Bouwmeester NJ, Hop WC, Van Dijk M, Anand KJ, Van den Anker JN, Tibboel D. Postoperative pain in the neonate: age-related differences in morphine requirements and metabolism. Intensive Care Medicine 2003;29(11):2009-15. [DOI: 10.1007/s00134-003-1899-4] - DOI - PubMed
Czarnecki 2020 {published data only}
    1. Czarnecki ML, Hainsworth K, Simpson PM, Arca MJ, Uhing MR, Zhang L, et al. A pilot randomized controlled trial of outcomes associated with parent-nurse controlled analgesia vs. continuous opioid infusion in the Neonatal Intensive Care Unit. Pain Management Nursing 2020;21(1):72-80. [DOI: 10.1016/j.pmn.2019.08.002] - DOI - PMC - PubMed
    1. Parent/nurse controlled analgesia in the Neonatal Intensive Care Unit. clinicaltrials.gov/show/NCT01823497 (first received 4 April 2013).
Lynn 2000 {published data only}
    1. Lynn AM, Nespeca MK, Bratton SL, Shen DD. Intravenous morphine in postoperative infants: intermittent bolus dosing versus targeted continuous infusions. Pain 2000;88(1):89-95. [DOI: 10.1016/s0304-3959(00)00313-4] - DOI - PubMed
Van Dijk 2002 {published data only}
    1. Van Dijk M, Bouwmeester NJ, Duivenvoorden HJ, Koot HM, Tibboel D, Passchier J, et al. Efficacy of continuous versus intermittent morphine administration after major surgery in 0-3-year-old infants; a double-blind randomized controlled trial. Pain 2002;98(3):305-13. [DOI: 10.1016/s0304-3959(02)00031-3] - DOI - PubMed
Vaughn 1996 {published data only}
    1. Vaughn PR, Townsend SF, Thilo EH, McKenzie S, Moreland S, Denver KK. Comparison of continuous infusion of fentanyl to bolus dosing in neonates after surgery. Journal of Pediatric Surgery 1996;31(12):1616-23. [DOI: 10.1016/s0022-3468(96)90033-0] - DOI - PubMed

References to studies excluded from this review

Abiramalatha 2019 {published data only}
    1. Abiramalatha T, Mathew SK, Mathew BS, Shabeer MP, Arulappan G, Kumar M, et al. Continuous infusion versus intermittent bolus doses of fentanyl for analgesia and sedation in neonates: an open-label randomised controlled trial. Archives of Disease in Childhood. Fetal and Neonatal Edition 2019;104(4):F433-9. [DOI: 10.1136/archdischild-2018-315345] - DOI - PubMed
Aguirre Corcoles 2003 {published data only}
    1. Aguirre Corcoles E, Duran Gonzalez ME, Zambudio GA, Gonzalez Celdran R, Castano Collado I, Carceles Baron MD, et al. Post-surgical paediatric pain: nursing - PCA vs continuous I.V. infusion of tramadol. Cirugia Pediatrica 2003;16(1):30-3. - PubMed
Anand 1987a {published data only}
    1. Anand KJS, Hickey PR. Randomised trial of high-dose sufentanil anesthesia in neonates undergoing cardiac surgery: effects on the metabolic stress response. Anesthesiology 1987;67:A502.
Anand 1987b {published data only}
    1. Anand KJS, Carr DB, Hickey PR. Randomised trial of high-dose sufentanil anesthesia in neonates undergoing cardiac surgery: hormonal and hemodynamic stress responses. Anesthesiology 1987;67:A501.
Anand 1992 {published data only}
    1. Anand KJ, Hickey PR. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. New England Journal of Medicine 1992;326(1):1-9. [DOI: 10.1056/NEJM199201023260101] - DOI - PubMed
Chiaretti 1997 {published data only}
    1. Chiaretti A, Simeone E, Langer A, Butera G, Piastra M, Tortorolo L, et al. Analgesic efficacy of ketorolac and fentanyl in pediatric intensive care. Pediatria Medica e Chirurgica [Medical and Surgical Pediatrics] 1997;19(6):419-24. - PubMed
Chiaretti 2000 {published data only}
    1. Chiaretti A, Viola L, Pietrini D, Piastra M, Savioli A, Tortorolo L, et al. Preemptive analgesia with tramadol and fentanyl in pediatric neurosurgery. Child's Nervous System 2000;16(2):93-9; discussion 100. [DOI: 10.1007/s003810050019] - DOI - PubMed
ChiCTR‐IPR‐15006112 {published data only}
    1. Compare recovery period with different doses of anesthetic drugs in cataract surgery in infant. trialsearch.who.int/Trial2.aspx?TrialID=ChiCTR-IPR-15006112 (first received: 15 March 2015).
Dake 1997 {published data only}
    1. Dake P, French L. Analgesia during circumcision. Journal of Family Practice 1997;45(2):100-1. - PubMed
Gruber 2001 {published data only}
    1. Gruber EM, Laussen PC, Casta A, Zimmerman AA, Zurakowski D, Reid R, et al. Stress response in infants undergoing cardiac surgery: a randomized study of fentanyl bolus, fentanyl infusion, and fentanyl-midazolam infusion. Anesthesia and Analgesia 2001;92(4):882-90. [DOI: 10.1097/00000539-200104000-00016] - DOI - PubMed
Karl 2012 {published data only}
    1. Karl HW, Tyler DC, Miser AW. Controlled trial of morphine vs hydromorphone for patient-controlled analgesia in children with postoperative pain. Pain Medicine (Malden, Mass.) 2012;13(12):1658-9. [DOI: 10.1111/j.1526-4637.2012.01496.x] - DOI - PubMed
Kururattapun 1986 {published data only}
    1. Kururattapun S, Prakanrattana U. Nalbuphine versus morphine for postoperative analgesia in critically ill patients. Chotmaihet Thangphaet [Journal of the Medical Association of Thailand] 1986;69(4):210-5. - PubMed
McEwan 2000 {published data only}
    1. McEwan A, Sigston PE, Andrews KA, Hack HA, Jenkins AM, May L, et al. A comparison of rectal and intramuscular codeine phosphate in children following neurosurgery. Paediatric Anaesthesia 2000;10(2):189-93. [DOI: 10.1046/j.1460-9592.2000.00482.x] - DOI - PubMed
Michel 1995 {published data only}
    1. Michel BI, Rothes A, Hund F, Huth R, Wippermann CF, Schmidt FX, et al. Analgosedation with fentanyl/midazolam following corrective cardiac surgery of congenital heart defects. Klinische Padiatrie 1995;207(6):341-6. - PubMed
NCT01094522 {published data only}
    1. Measuring the amount of methadone or morphine in the blood of neonates, infants & children after cardiac surgery. clinicaltrials.gov/show/NCT01094522 (first received 9 August 2017).
Pan 2021 {published data only}
    1. Pan Y, Wang Y, Lie D, Liu D, Chen X, Wu Z, et al. Effectiveness of analgesia with hydromorphone hydrochloride for postoperative pain following surgical repair of structural congenital malformations in children: a randomized controlled trial. BMC Anesthesiology 2021;21(1):192. [DOI: 10.1186/s12871-021-01412-8] [PMID: ] - DOI - PMC - PubMed
Waterworth 1974 {published data only}
    1. Waterworth TA. Pentazocine (Fortral) as postoperative analgesic in children. Archives of Disease in Childhood 1974;49(6):488-90. [DOI: 10.1136/adc.49.6.488] - DOI - PMC - PubMed

References to ongoing studies

NCT00004696 {published data only}
    1. Study of morphine in postoperative infants to allow normal ventilation. clinicaltrials.gov/show/NCT00004696 (first received 25 February 2000).

Additional references

American Academy of Pediatrics 2016
    1. American Academy of Pediatrics. Prevention and management of procedural pain in the neonate: an update. Pediatrics 2016;137(2):1-13. [DOI: 10.1542/peds.2015-4271] [PMID: ] - DOI - PubMed
Anand 2004
    1. Anand KJ, Hall RW, Desai N, Shephard B, Bergqvist LL, Young TE, et al, NEOPAIN Trial Investigators Group. Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. Lancet 2004;363(9422):1673-82. [DOI: 10.1016/S0140-6736(04)16251-X] [PMID: ] - DOI - PubMed
Ayed 2017
    1. Ayed M, Shah VS, Taddio A. Premedication for non-urgent endotracheal intubation for preventing pain in neonates. Cochrane Database of Systematic Reviews 2017, Issue 2. Art. No: CD012562. [DOI: 10.1002/14651858.CD012562] - DOI
Balda 2019
    1. Balda RC, Guinsburg R. Evaluation and treatment of pain in the neonatal period [Avaliação e tratamento da dor no período neonatal]. Revista Pediátrica 2019;9(1):43-52. [DOI: 10.25060/residpediatr-2019.v9n1-13] - DOI
Bayley 1993
    1. Bayley N. Bayley Scales of Infant Development–II. San Antonio (TX): Psychological Corporation, 1993.
Bayley 2005
    1. Bayley N. Bayley Scales of Infant and Toddler Development. 3rd edition. San Antonio (TX): Harcourt Assessment, 2005.
Bellù 2021
    1. Bellù R, Romantsik O, Nava C, De Waal KA, Zanini R, Bruschettini M. Opioids for newborn infants receiving mechanical ventilation. Cochrane Database of Systematic Reviews 2021, Issue 3. Art. No: CD013732. [DOI: 10.1002/14651858.CD013732.pub2] [PMID: ] - DOI - PMC - PubMed
Cochrane EPOC Group 2017
    1. Cochrane Effective Practice and Organisation of Care (EPOC) Group. Data extraction and management. EPOC resources for review authors, 2017. epoc.cochrane.org/resources/epoc-resources-review-authors (accessed prior to 20 April 2021).
Costa 2013
    1. Costa S, Romagnoli C, Zuppa AA, Cota F, Scorrano A, Gallini F, et al. How to administrate erythropoietin, intravenous or subcutaneous? Acta Paediatrica 2013;102(6):579-83. [DOI: 10.1111/apa.12193] [PMID: ] - DOI - PubMed
De Vries 1992
    1. De Vries LS, Eken P, Dubowitz LM. The spectrum of leukomalacia using cranial ultrasound. Behavioural Brain Research 1992;49(1):1-6. [DOI: 10.1016/s0166-4328(05)80189-5] [PMID: ] - DOI - PubMed
Duedahl 2007
    1. Duedahl TH, Hansen EH. A qualitative systematic review of morphine treatment in children with postoperative pain. Paediatric Anaesthesia 2007;17(8):756-74. [DOI: 10.1111/j.1460-9592.2007.02213.x] - DOI - PubMed
Eriksson 2019
    1. Eriksson M, Campbell-Yeo M. Assessment of pain in newborn infants. Seminars in Fetal and Neonatal Medicine 2019;24(4):101003. [DOI: 10.1016/j.siny.2019.04.003] [PMID: ] - DOI - PubMed
Euteneuer 2020
    1. Euteneuer JC, Mizuno T, Fukuda T, Zhao J, Setchell KD, Muglia LJ, et al. Model-informed Bayesian estimation improves the prediction of morphine exposure in neonates and infants. Therapeutic Drug Monitoring 2020;42(5):778-86. [DOI: 10.1097/FTD.0000000000000763.] [PMID: ] - DOI - PMC - PubMed
Fitzgerald 1989
    1. Fitzgerald M, Millard C, McIntosh N. Cutaneous hypersensitivity following peripheral tissue damage in newborn infants and its reversal with topical anaesthesia. Pain 1989;39(1):31-6. [DOI: 10.1016/0304-3959(89)90172-3] [PMID: ] - DOI - PubMed
Giordano 2019
    1. Giordano V, Edobor J, Deindl P, Wildner B, Goeral K, Steinbauer P, et al. Pain and sedation scales for neonatal and pediatric patients in a preverbal stage of development: a systematic review. JAMA Pediatrics 2019;173(12):1186-97. [DOI: 10.1001/jamapediatrics.2019.3351] [PMID: ] - DOI - PubMed
GRADEpro GDT [Computer program]
    1. McMaster University (developed by Evidence Prime) GRADEpro GDT. Version accessed 11 September 2020. Hamilton (ON): McMaster University (developed by Evidence Prime), 2015. Available at gradepro.org.
Griffiths 1954
    1. Griffiths R. The Abilities of Babies: A Study of Mental Measurement. London, UK: University of London Press, 1954.
Griffiths 1970
    1. Griffiths R. The Abilities of Young Children: A Comprehensive System of Mental Measurement For The First Eight Years. London, UK: Child Development Research Center, 1970.
Hall 2005
    1. Hall RW, Kronsberg SS, Barton BA, Kaiser JR, Anand KJ, NEOPAIN Trial Investigators Group. Morphine, hypotension, and adverse outcomes among preterm neonates: who's to blame? Secondary results from the NEOPAIN trial. Pediatrics 2005;115(5):1351-9. [DOI: 10.1542/peds.2004-1398] [PMID: ] - DOI - PubMed
Higgins 2011
    1. Higgins JP, Altman DG, Sterne JA, Cochrane Statistical Methods Group and the Cochrane Bias Methods Group. Chapter 8: Assessing risk of bias in included studies. In: Higgins JP, Green S, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. Available from training.cochrane.org/handbook/archive/v5.1.
Higgins 2020
    1. Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020. Available from www.training.cochrane.org/handbook.
Higgins 2021
    1. Higgins JP, Eldridge S, Li T (editors). Chapter 23: Including variants on randomized trials. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane, 2021. Available from www.training.cochrane.org/handbook.
Hummel 2008
    1. Hummel P, Puchalski M, Creech SD, Weiss MG. Clinical reliability and validity of the N-PASS: neonatal pain, agitation and sedation scale with prolonged pain. Journal of Perinatology 2008;28(1):55-60. [DOI: 10.1038/sj.jp.7211861] [PMID: ] - DOI - PubMed
ICCROP 2005
    1. International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Archives of Ophthalmology 2005;123(7):991-9. [DOI: 10.1001/archopht.123.7.991] [PMID: ] - DOI - PubMed
Jacobs 2013
    1. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database of Systematic Reviews 2013, Issue 1. Art. No: CD003311. [DOI: 10.1002/14651858.CD003311.pub3] - DOI - PMC - PubMed
Jobe 2001
    1. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. American Journal of Respiratory and Critical Care Medicine 2001;163(7):1723-9. [DOI: 10.1164/ajrccm.163.7.2011060] [PMID: ] - DOI - PubMed
Kuan 2020
    1. Kuan CC, Shaw SJ. Anesthesia for major surgery in the neonate. Anesthesiology Clinics 2020;38(1):1-18. [DOI: 10.1016/j.anclin.2019.10.001] [PMID: ] - DOI - PubMed
Lawrence 1983
    1. Lawrence J, Alcock D, McGrath P, Kay J, MacMurray SB, Dulberg C. The development of a tool to assess neonatal pain. Neonatal Network 1993;12:59-66. [PMID: ] - PubMed
Marshall 2018
    1. Marshall IJ, Noel-Storr AH, Kuiper J, Thomas J, Wallace BC. Machine learning for identifying randomized controlled trials: an evaluation and practitioner’s guide. Research Synthesis Methods 2018;9(4):602-14. [DOI: 10.1002/jrsm.1287] [PMID: ] - DOI - PMC - PubMed
McPherson 2015
    1. McPherson C, Haslam M, Pineda R, Rogers C, Neil JJ, Inder TE. Brain injury and development in preterm infants exposed to fentanyl. Annals of Pharmacotherapy 2015;49(12):1291-7. [DOI: 10.1177/1060028015606732] [PMID: ] - DOI - PMC - PubMed
McPherson 2018
    1. McPherson C. Premedication for endotracheal intubation in the neonate. Neonatal Network 2018;37(4):238-47. [DOI: 10.1891/0730-0832.37.4.238] [PMID: ] - DOI - PubMed
Moher 2009
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology 2009;62(10):1006-12. [PMID: ] - PubMed
Muhly 2020
    1. Muhly WT, Taylor E, Razavi C, Walker SM, Yang L, Graaff JC, et al, Pediatric Perioperative Outcomes Group. A systematic review of outcomes reported in pediatric perioperative research: a report from the Pediatric Perioperative Outcomes Group. Paediatric Anaesthesia 2020 [Epub ahead of print]. [DOI: 10.1111/pan.13981] [PMID: ] - DOI - PubMed
NIH 1979
    1. National Institutes of Health. Workshop on bronchopulmonary dysplasia. Journal of Pediatrics 1979;95(5 Pt 2):815-920. [PMID: ]
Noel‐Storr 2021
    1. Noel-Storr AH, Dooley G, Elliott J, Steele E, Shemilt I, Mavergames C, et al. An evaluation of Cochrane Crowd found that crowdsourcing produced accurate results in identifying randomised trials. Journal of Clinical Epidemiology 2021;4356(21):00008-1. [DOI: 10.1016/j.jclinepi.2021.01.006] [PMID: ] - DOI - PubMed
Noel‐Storr 2020
    1. Noel-Storr AH, Dooley G, Wisniewski S, Glanville J, Thomas J, Cox S, et al. Cochrane Centralised Search Service showed high sensitivity identifying randomised controlled trials: a retrospective analysis. Journal of Clinical Epidemiology 2020;127:142-50. [DOI: 10.1016/j.jclinepi.2020.08.008] [PMID: ] - DOI - PubMed
O'Brien 2019
    1. O'Brien F, Clapham D, Krysiak K, Batchelor H, Field P, Caivano G, et al. Making medicines baby size: the challenges in bridging the formulation gap in neonatal medicine. International Journal of Molecular Sciences 2019;20(11):2688. [DOI: 10.3390/ijms20112688] - DOI - PMC - PubMed
Olsson 2021
    1. Olsson E, Ahl H, Bengtsson K, Vejayaram DN, Norman E, Bruschettini M, et al. The use and reporting of neonatal pain scales: a systematic review of randomized trials. Pain 2021;162(2):353-60. [DOI: 10.1097/j.pain.0000000000002046] [PMID: ] - DOI - PMC - PubMed
Papai 2010
    1. Papai K, Budai M, Ludanyi K, Antal I, Klebovich I. In vitro food–drug interaction study: which milk component has a decreasing effect on the bioavailability of ciprofloxacin? Journal of Pharmaceutical and Biomedical Analysis 2010;52(1):37-42. [DOI: 10.1016/j.jpba.2009.12.003] [PMID: ] - DOI - PubMed
Papile 1978
    1. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. Journal of Pediatrics 1978;92(4):529-34. [DOI: 10.1016/s0022-3476(78)80282-0] [PMID: ] - DOI - PubMed
Review Manager 2020 [Computer program]
    1. Nordic Cochrane Centre, The Cochrane Collaboration Review Manager 5 (RevMan 5). Version 5.4. Copenhagen: Nordic Cochrane Centre, The Cochrane Collaboration, 2020.
Sanders 2013
    1. Sanders RD, Hassell J, Davidson AJ, Robertson NJ, Ma D. Impact of anaesthetics and surgery on neurodevelopment: an update. British Journal of Anaesthesiology 2013;110(Suppl 1):i53-72. [DOI: 10.1093/bja/aet054] [PMID: ] - DOI - PMC - PubMed
Schnabel 2015
    1. Schnabel A, Reichl SU, Meyer-Frießem C, Zahn PK, Pogatzki-Zahn E. Tramadol for postoperative pain treatment in children. Cochrane Database of Systematic Reviews 2015, Issue 3. Art. No: CD009574. [DOI: 10.1002/14651858.CD009574.pub2] [PMID: ] - DOI - PMC - PubMed
Schünemann 2013
    1. Schünemann H, Brożek J, Guyatt G, Oxman A, editor(s). Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach (updated October 2013). GRADE Working Group, 2013. Available from gdt.guidelinedevelopment.org/app/handbook/handbook.html (accessed prior to 14/12/22).
Simons 2003
    1. Simons SH, Van Dijk M, Van Lingen RA, Roofthooft D, Duivenvoorden HJ, Jongeneel N, et al. Routine morphine infusion in preterm newborns who received ventilatory support: a randomized controlled trial. JAMA 2003;290(18):2419-27. [DOI: 10.1001/jama.290.18.2419] [PMID: ] - DOI - PubMed
Stevens 1996
    1. Stevens B, Johnstone C, Petryshen P, Taddio A. Premature infant pain profile: development and initial validation. Clinical Journal of Pain 1996;12:13-22. [DOI: 10.1097/00002508-199603000-00004] [PMID: ] - DOI - PubMed
Strolin 2003
    1. Strolin Benedetti M, Baltes EL. Drug metabolism and disposition in children. Fundamental & Clinical Pharmacology 2003;17(3):281-99. [DOI: 10.1046/j.1472-8206.2003.00140.x] [PMID: ] - DOI - PubMed
Thigpen 2019
    1. Thigpen JC, Odle BL, Harirforoosh S. Opioids: a review of pharmacokinetics and pharmacodynamics in neonates, infants, and children. European Journal of Drug Metabolism and Pharmacokinetics 2019;44(5):591-609. [DOI: 10.1007/s13318-019-00552-0] [PMID: ] - DOI - PubMed
Thomas 2020
    1. Thomas J, McDonald S, Noel-Storr AH, Shemilt I, Elliott J, Mavergames C, et al. Machine learning reduces workload with minimal risk of missing studies: development and evaluation of an RCT classifier for Cochrane Reviews. Journal of Clinical Epidemiology 2020;S0895-4356(20):31172-0. [DOI: 10.1016/j.jclinepi.2020.11.003vcvc] [PMID: ] - DOI - PMC - PubMed
Trescot 2008
    1. Trescot AM, Datta S, Lee M, Hansen H. Opioid pharmacology. Pain Physician 2008;11(2 Suppl):S133-53. [PMID: ] - PubMed
Van Dijk 2001
    1. Van Dijk M, Boer JB, Koot HM, Duivenvoorden HJ, Passchier J, Bouwmeester N, et al. The association between physiological and behavioral pain measures in 0- to 3-year-old Infants after major surgery. Journal of Pain and Symptom Management 2001;22(1):600-9. [DOI: 10.1016/S0885-3924(01)00288-3.] [PMID: ] - DOI - PubMed
Van Dijk 2009
    1. Van Dijk M, Roofthooft DW, Anand KJ, Guldemond F, De Graaf J, Simons S, et al. Taking up the challenge of measuring prolonged pain in (premature) neonates: the COMFORTneo scale seems promising. Clinical Journal of Pain 2009;25(7):607-16. [DOI: 10.1097/AJP.0b013e3181a5b52a] [PMID: ] - DOI - PubMed
Van Gonge 2018
    1. Van Donge T, Mian P, Tibboel D, Van Den Anker J, Allegaert K. Drug metabolism in early infancy: opioids as an illustration. Expert Opinion on Drug Metabolism & Toxicology 2018;14(3):287-301. [DOI: 10.1080/17425255.2018.1432595] [PMID: ] - DOI - PubMed
Walsh 1986
    1. Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatric Clinics of North America 1986;33(1):179-201. [DOI: 10.1016/s0031-3955(16)34975-6] [PMID: ] - DOI - PMC - PubMed
Walsh 2004
    1. Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A, et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics 2004;114(5):1305-11. [DOI: 10.1542/peds.2004-0204] [PMID: ] - DOI - PubMed
WHO 2012
    1. World Health Organization. Annex 5. Development of paediatric medicines: points to consider in formulation. WHO Technical Report Series No. 970; 2012. Available at: www.who.int/medicines/areas/quality_safety/quality_assurance/Annex5TRS-9... (accessed prior to 14/12/22).
Ziesenitz 2018
    1. Ziesenitz VC, Vaughns JD, Koch G, Mikus G, Van den Anker JN. Correction to: Pharmacokinetics of fentanyl and Its derivatives in children: a comprehensive review. Clinical Pharmacokinetics 2018;57(3):393-417. [DOI: 10.1007/s40262-017-0609-2] [PMID: ] - DOI - PubMed
Zwicker 2016
    1. Zwicker JG, Miller SP, Grunau RE, Chau V, Brant R, Studholme C, et al. Smaller cerebellar growth and poorer neurodevelopmental outcomes in very preterm infants exposed to neonatal morphine. Journal of Pediatrics 2016;172:81-7.e2. [DOI: 10.1016/j.jpeds.2015.12.024] [PMID: ] - DOI - PMC - PubMed

References to other published versions of this review

Kinoshita 2021
    1. Kinoshita M, Stempel KS, Borges do Nascimento IJ, Bruschettini M. Systemic opioids versus other analgesics and sedatives for postoperative pain in neonates. Cochrane Database of Systematic Reviews 2021, Issue 5. Art. No: CD014876. [DOI: 10.1002/14651858.CD014876] - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources