Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;20(1):552-571.
doi: 10.3934/mbe.2023025. Epub 2022 Oct 12.

Applying GA-PSO-TLBO approach to engineering optimization problems

Affiliations
Free article

Applying GA-PSO-TLBO approach to engineering optimization problems

YoungSu Yun et al. Math Biosci Eng. 2023 Jan.
Free article

Abstract

Under addressing global competition, manufacturing companies strive to produce better and cheaper products more quickly. For a complex production system, the design problem is intrinsically a daunting optimization task often involving multiple disciplines, nonlinear mathematical model, and computation-intensive processes during manufacturing process. Here is a reason to develop a high performance algorithm for finding an optimal solution to the engineering design and/or optimization problems. In this paper, a hybrid metaheuristic approach is proposed for solving engineering optimization problems. A genetic algorithm (GA), particle swarm optimization (PSO), and teaching and learning-based optimization (TLBO), called the GA-PSO-TLBO approach, is used and demonstrated for the proposed hybrid metaheuristic approach. Since each approach has its strengths and weaknesses, the GA-PSO-TLBO approach provides an optimal strategy that maintains the strengths as well as mitigates the weaknesses, as needed. The performance of the GA-PSO-TLBO approach is compared with those of conventional approaches such as single metaheuristic approaches (GA, PSO and TLBO) and hybrid metaheuristic approaches (GA-PSO and GA-TLBO) using various types of engineering optimization problems. An additional analysis for reinforcing the performance of the GA-PSO-TLBO approach was also carried out. Experimental results proved that the GA-PSO-TLBO approach outperforms conventional competing approaches and demonstrates high flexibility and efficiency.

Keywords: engineering optimization problem; genetic algorithm; hybrid metaheuristic approach; particle swarm optimization; teaching and learning-based optimization.

PubMed Disclaimer

Publication types