Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;20(1):758-774.
doi: 10.3934/mbe.2023035. Epub 2022 Oct 14.

Days-ahead water level forecasting using artificial neural networks for watersheds

Affiliations
Free article

Days-ahead water level forecasting using artificial neural networks for watersheds

Lemuel Clark Velasco et al. Math Biosci Eng. 2023 Jan.
Free article

Abstract

Watersheds of tropical countries having only dry and wet seasons exhibit contrasting water level behaviour compared to countries having four seasons. With the changing climate, the ability to forecast the water level in watersheds enables decision-makers to come up with sound resource management interventions. This study presents a strategy for days-ahead water level forecasting models using an Artificial Neural Network (ANN) for watersheds by conducting data preparation of water level data captured from a Water Level Monitoring Station (WLMS) and two Automatic Rain Gauge (ARG) sensors divided into the two major seasons in the Philippines being implemented into multiple ANN models with different combinations of training algorithms, activation functions, and a number of hidden neurons. The implemented ANN model for the rainy season which is RPROP-Leaky ReLU produced a MAPE and RMSE of 6.731 and 0.00918, respectively, while the implemented ANN model for the dry season which is SCG-Leaky ReLU produced a MAPE and RMSE of 7.871 and 0.01045, respectively. By conducting appropriate water level data correction, data transformation, and ANN model implementation, the results of error computation and assessment shows the promising performance of ANN in days-ahead water level forecasting of watersheds among tropical countries.

Keywords: artificial neural network; days-ahead water level forecasting; multilayer perceptron neural network; water level forecasting; watersheds.

PubMed Disclaimer

Similar articles

Publication types