Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan;136(1):6.
doi: 10.1007/s00122-023-04291-4. Epub 2023 Jan 19.

BrACOS5 mutations induced male sterility via impeding pollen exine formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

Affiliations

BrACOS5 mutations induced male sterility via impeding pollen exine formation in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

Jiaqi Zou et al. Theor Appl Genet. 2023 Jan.

Erratum in

  • Correction to volume 136 issue 1.
    [No authors listed] [No authors listed] Theor Appl Genet. 2023 Mar 23;136(4):84. doi: 10.1007/s00122-023-04323-z. Theor Appl Genet. 2023. PMID: 36952001 Free PMC article. No abstract available.

Abstract

BrACOS5 mutations led to male sterility of Chinese cabbage verified in three allelic male-sterile mutants. Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major vegetable crops in East Asia, and the utilization of male-sterile line is an important measure for its hybrid seed production. Herein, we isolated three allelic male-sterile mutants, msm1-1, msm1-2 and msm1-3, from an ethyl methane sulfonate (EMS) mutagenized population of Chinese cabbage double-haploid (DH) line 'FT', whose microspores were completely aborted with severely absent exine, and tapetums were abnormally developed. Genetic analyses indicated that the three male-sterile mutants belonged to allelic mutation and were triggered by the same recessive nuclear gene. MutMap-based gene mapping and kompetitive allele-specific PCR (KASP) analysis demonstrated that three different single-nucleotide polymorphisms (SNPs) of BraA09g012710.3C were responsible for the male sterility of msm1-1/2/3, respectively. BraA09g012710.3C is orthologous of Arabidopsis thaliana ACOS5 (AT1G62940), encoding an acyl-CoA synthetase in sporopollenin biosynthesis, and specifically expressed in anther, so we named BraA09g012710.3C as BrACOS5. BrACOS5 localizes to the endoplasmic reticulum (ER). Mutations of BrACOS5 resulted in decreased enzyme activities and altered fatty acid contents in msm1 anthers. As well as the transcript accumulations of putative orthologs involved in sporopollenin biosynthesis were significantly down-regulated excluding BrPKSA. These results provide strong evidence for the integral role of BrACOS5 in conserved sporopollenin biosynthesis pathway and also contribute to uncovering exine development pattern and underlying male sterility mechanism in Chinese cabbage.

PubMed Disclaimer

References

    1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178 - PubMed - DOI
    1. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460 - PubMed - DOI
    1. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39:170–181 - PubMed - DOI
    1. Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498 - PubMed - DOI
    1. Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606 - PubMed - DOI

LinkOut - more resources