Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination
- PMID: 36656507
- DOI: 10.1007/s13402-023-00775-z
Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination
Abstract
Background: Lactate is an important metabolite derived from glycolysis under physiological and pathological conditions. The Warburg effect reveals the vital role of lactate in cancer progression. Numerous studies have reported crucial roles for lactate in cancer progression and cell fate determination. Lactylation, a novel posttranslational modification (PTM), has provided a new opportunity to investigate metabolic epigenetic regulation, and studies of this process have been initiated in a wide range of cancer cells, cancer-associated immune cells, and embryonic stem cells.
Conclusion: Lactylation is a novel and interesting mechanism of lactate metabolism linked to metabolic rewiring and epigenetic remodeling. It is a potential and hopeful target for cancer therapy. Here, we summarize the discovery of lactylation, the mechanisms of site modification, and progress in research on nonhistone lactylation. We focus on the potential roles of lactylation in cancer progression and cell fate determination and the possible therapeutic strategies for targeting lysine lactylation. Finally, we suggest some future research topics on lactylation to inspire some interesting ideas.
Keywords: Lactylation; Posttranslational modification; Somatic cell reprogramming; Tumor microenvironment; Warburg effect.
© 2023. Springer Nature Switzerland AG.
Similar articles
-
Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression.Int J Mol Sci. 2022 Oct 8;23(19):11943. doi: 10.3390/ijms231911943. Int J Mol Sci. 2022. PMID: 36233246 Free PMC article. Review.
-
Histone lactylation regulates cancer progression by reshaping the tumor microenvironment.Front Immunol. 2023 Oct 27;14:1284344. doi: 10.3389/fimmu.2023.1284344. eCollection 2023. Front Immunol. 2023. PMID: 37965331 Free PMC article. Review.
-
Lactylation in cancer progression and drug resistance.Drug Resist Updat. 2025 Jul;81:101248. doi: 10.1016/j.drup.2025.101248. Epub 2025 Apr 21. Drug Resist Updat. 2025. PMID: 40287994 Review.
-
Advances in the interaction of glycolytic reprogramming with lactylation.Biomed Pharmacother. 2024 Aug;177:116982. doi: 10.1016/j.biopha.2024.116982. Epub 2024 Jun 20. Biomed Pharmacother. 2024. PMID: 38906019 Review.
-
Lactylation: the novel histone modification influence on gene expression, protein function, and disease.Clin Epigenetics. 2024 May 29;16(1):72. doi: 10.1186/s13148-024-01682-2. Clin Epigenetics. 2024. PMID: 38812044 Free PMC article. Review.
Cited by
-
Decoding Osteosarcoma's Lactylation Gene Expression: Insights Into Prognosis, Immune Dynamics, and Treatment.Anal Cell Pathol (Amst). 2025 Feb 21;2025:6517238. doi: 10.1155/ancp/6517238. eCollection 2025. Anal Cell Pathol (Amst). 2025. PMID: 40026531 Free PMC article.
-
Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts.Pharmaceuticals (Basel). 2024 Jun 6;17(6):744. doi: 10.3390/ph17060744. Pharmaceuticals (Basel). 2024. PMID: 38931411 Free PMC article. Review.
-
Lactate-induced protein lactylation in cancer: functions, biomarkers and immunotherapy strategies.Front Immunol. 2025 Jan 10;15:1513047. doi: 10.3389/fimmu.2024.1513047. eCollection 2024. Front Immunol. 2025. PMID: 39867891 Free PMC article. Review.
-
Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy.Acta Pharmacol Sin. 2024 Aug;45(8):1533-1555. doi: 10.1038/s41401-024-01264-1. Epub 2024 Apr 15. Acta Pharmacol Sin. 2024. PMID: 38622288 Free PMC article. Review.
-
The role of lactate-induced protein lactylation in gliomas: implications for preclinical research and the development of new treatments.Front Pharmacol. 2024 Jun 25;15:1383274. doi: 10.3389/fphar.2024.1383274. eCollection 2024. Front Pharmacol. 2024. PMID: 38983918 Free PMC article. Review.
References
-
- O. Warburg, Science 123, 309–314 (1956). https://doi.org/10.1126/science.123.3191.309 - DOI - PubMed
-
- J.D. Rabinowitz, S. Enerback, Nat. Metab. 2, 566–571 (2020). https://doi.org/10.1038/s42255-020-0243-4 - DOI - PubMed - PMC
-
- W. Zhang, G. Wang, Z.G. Xu, H. Tu, F. Hu, J. Dai, Y. Chang, Y. Chen, Y. Lu, H. Zeng, Z. Cai, F. Han, C. Xu, G. Jin, L. Sun, B.S. Pan, S.W. Lai, C.C. Hsu, J. Xu, Z.Z. Chen, H.Y. Li, P. Seth, J. Hu, X. Zhang, H. Li, H.K. Lin, Cell 178, 176–189 e115 (2019). https://doi.org/10.1016/j.cell.2019.05.003
-
- J. Roper, O.H. Yilmaz, Cell. Metab. 25, 993–994 (2017). https://doi.org/10.1016/j.cmet.2017.04.019 - DOI - PubMed - PMC
-
- Y.S. Lee, T.Y. Kim, Y. Kim, S. Kim, S.H. Lee, S.U. Seo, B.O. Zhou, O. Eunju, K.S. Kim, M.N. Kweon, Exp. Mol. Med. 53, 1319–1331 (2021). https://doi.org/10.1038/s12276-021-00667-y - DOI - PubMed - PMC
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical