Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan 19;18(1):e0280437.
doi: 10.1371/journal.pone.0280437. eCollection 2023.

Human papillomavirus genotype distribution among women with and without cervical cancer: Implication for vaccination and screening in Ghana

Affiliations

Human papillomavirus genotype distribution among women with and without cervical cancer: Implication for vaccination and screening in Ghana

Yvonne Nartey et al. PLoS One. .

Abstract

Introduction: Determining the high-risk human papillomavirus (HR-HPV) genotypes burden in women with and without cervical cancer afford a direct comparison of their relative distributions. This quest is fundamental to implementing a future population-based cervical cancer prevention strategy in Ghana. We estimated the cervical cancer risk by HPV genotypes, and the HPV vaccine-preventable proportion of cervical cancer diagnosed in Ghana.

Materials and methods: An unmatched case-control study was conducted at the two largest cervical cancer treatment centres in Ghana from 1st October 2014 to 31st May 2015. Cases were women diagnosed with cervical cancer and controls were women without cervical cancer who were seeking care at the two hospitals. Nested multiplex polymerase chain reaction (NM-PCR) was used to detect HPV infection in cervical samples. Logistic regression was used to determine the association between the risk of cervical cancer and identified HPV infection. P ≤0.05 was considered statistically significant.

Results: HPV deoxyribonucleic acid (DNA) data were analysed for 177 women with cervical cancer (cases) and 201 without cancer (controls). Cervical cancer was diagnosed at older ages compared to the age at which controls were recruited (median ages, 57 years vs 34 years; p < 0.001). Most women with cervical cancer were more likely to be single with no formal education, unemployed and less likely to live in metropolitan areas compared to women without cervical cancer (all p-value <0.001). HPV DNA was detected in more women with cervical cancer compared to those without cervical cancer (84.8% vs 45.8%). HR-HPV genotypes 16, 18, 45, 35 and 52 were the most common among women with cervical cancer, while 66, 52, 35, 43 and 31 were frequently detected in those without cancer. HPV 66 and 35 were the most dominant non-vaccine genotypes; HPV 66 was more prevalent among women with cervical cancer and HPV 35 in those without cervical cancer. Cervical cancer risk was associated with a positive HPV test (Adjusted OR (AOR): 5.78; 95% CI: 2.92-11.42), infection with any of the HR-HPV genotypes (AOR: 5.56; 95% CI: 3.27-13.16) or multiple HPV infections (AOR: 9.57 95% CI 4.06-22.56).

Conclusion: Women with cervical cancer in Ghana have HPV infection with multiple genotypes, including some non-vaccine genotypes, with an estimated cervical cancer risk of about six- to ten-fold in the presence of a positive HPV test. HPV DNA tests and multivalent vaccine targeted at HPV 16, 18, 45 and 35 genotypes will be essential in Ghana's cervical cancer control programme. Large population-based studies are required in countries where cervical cancer is most prevalent to determine non-vaccine HPV genotypes which should be considered for the next-generation HPV vaccines.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Summary of the study participants’ selection.
Fig 2
Fig 2. Pattern of common HPV multiple infections in women with and without cervical cancer.
Note: HPV: Human papillomavirus.

References

    1. Laryea DO, Awuah B, Amoako YA, Osei-Bonsu E, Dogbe J, Larsen-Reindorf R, et al. Cancer incidence in Ghana, 2012: evidence from a population-based cancer registry. BMC Cancer. 2014;14:362. doi: 10.1186/1471-2407-14-362 - DOI - PMC - PubMed
    1. Nartey Y, Hill PC, Amo-Antwi K, Nyarko KM, Yarney J, Cox B. Characteristics of Women Diagnosed with Invasive Cervical Cancer in Ghana. Asian Pac J Cancer Prev. 2018;19(2):357–63. doi: 10.22034/APJCP.2018.19.2.357 - DOI - PMC - PubMed
    1. Nartey Y, Hill PC, Amo-Antwi K, Nyarko KM, Yarney J, Cox B. Factors Contributing to the Low Survival Among Women With a Diagnosis of Invasive Cervical Cancer in Ghana. Int J Gynecol Cancer. 2017. - PubMed
    1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F - DOI - PubMed
    1. Loud JT, Murphy J. Cancer Screening and Early Detection in the 21(st) Century. Semin Oncol Nurs. 2017;33(2):121–8. doi: 10.1016/j.soncn.2017.02.002 - DOI - PMC - PubMed

Publication types

MeSH terms

Supplementary concepts